Compare commits
21 Commits
be835aded4
...
ad7a1c9cdf
Author | SHA1 | Date | |
---|---|---|---|
ad7a1c9cdf | |||
7c7f071f95 | |||
1a0e3c8042 | |||
2fcc650eb7 | |||
b20fa8bb75 | |||
d7fb64ed13 | |||
5a03659112 | |||
fca984e76b | |||
dec67e8255 | |||
1535a48a3f | |||
9c2625b11e | |||
2dfb6c57ce | |||
88d44f020e | |||
34548c64a3 | |||
47ea0ac434 | |||
91cabec977 | |||
445e9dc00b | |||
6ce3760471 | |||
47624f12cf | |||
501975457f | |||
155b655938 |
11
app_sim.py
Normal file
11
app_sim.py
Normal file
@ -0,0 +1,11 @@
|
||||
from PytorchBoot.application import PytorchBootApplication
|
||||
from runners.simulator import Simulator
|
||||
|
||||
@PytorchBootApplication("sim")
|
||||
class SimulateApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
simulator = Simulator("configs/local/simulation_config.yaml")
|
||||
simulator.run("create")
|
||||
simulator.run("simulate")
|
||||
|
162
beans/predict_result.py
Normal file
162
beans/predict_result.py
Normal file
@ -0,0 +1,162 @@
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
class PredictResult:
|
||||
def __init__(self, raw_predict_result, input_pts=None, cluster_params=dict(eps=0.5, min_samples=2)):
|
||||
self.input_pts = input_pts
|
||||
self.cluster_params = cluster_params
|
||||
self.sampled_9d_pose = raw_predict_result
|
||||
self.sampled_matrix_pose = self.get_sampled_matrix_pose()
|
||||
self.distance_matrix = self.calculate_distance_matrix()
|
||||
self.clusters = self.get_cluster_result()
|
||||
self.candidate_matrix_poses = self.get_candidate_poses()
|
||||
self.candidate_9d_poses = [np.concatenate((self.matrix_to_rotation_6d_numpy(matrix[:3,:3]), matrix[:3,3].reshape(-1,)), axis=-1) for matrix in self.candidate_matrix_poses]
|
||||
self.cluster_num = len(self.clusters)
|
||||
|
||||
@staticmethod
|
||||
def rotation_6d_to_matrix_numpy(d6):
|
||||
a1, a2 = d6[:3], d6[3:]
|
||||
b1 = a1 / np.linalg.norm(a1)
|
||||
b2 = a2 - np.dot(b1, a2) * b1
|
||||
b2 = b2 / np.linalg.norm(b2)
|
||||
b3 = np.cross(b1, b2)
|
||||
return np.stack((b1, b2, b3), axis=-2)
|
||||
|
||||
@staticmethod
|
||||
def matrix_to_rotation_6d_numpy(matrix):
|
||||
return np.copy(matrix[:2, :]).reshape((6,))
|
||||
|
||||
def __str__(self):
|
||||
info = "Predict Result:\n"
|
||||
info += f" Predicted pose number: {len(self.sampled_9d_pose)}\n"
|
||||
info += f" Cluster number: {self.cluster_num}\n"
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
info += f" - Cluster {i} size: {len(cluster)}\n"
|
||||
max_distance = np.max(self.distance_matrix[self.distance_matrix != 0])
|
||||
min_distance = np.min(self.distance_matrix[self.distance_matrix != 0])
|
||||
info += f" Max distance: {max_distance}\n"
|
||||
info += f" Min distance: {min_distance}\n"
|
||||
return info
|
||||
|
||||
def get_sampled_matrix_pose(self):
|
||||
sampled_matrix_pose = []
|
||||
for pose in self.sampled_9d_pose:
|
||||
rotation = pose[:6]
|
||||
translation = pose[6:]
|
||||
pose = self.rotation_6d_to_matrix_numpy(rotation)
|
||||
pose = np.concatenate((pose, translation.reshape(-1, 1)), axis=-1)
|
||||
pose = np.concatenate((pose, np.array([[0, 0, 0, 1]])), axis=-2)
|
||||
sampled_matrix_pose.append(pose)
|
||||
return np.array(sampled_matrix_pose)
|
||||
|
||||
def rotation_distance(self, R1, R2):
|
||||
R = np.dot(R1.T, R2)
|
||||
trace = np.trace(R)
|
||||
angle = np.arccos(np.clip((trace - 1) / 2, -1, 1))
|
||||
return angle
|
||||
|
||||
def calculate_distance_matrix(self):
|
||||
n = len(self.sampled_matrix_pose)
|
||||
dist_matrix = np.zeros((n, n))
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
dist_matrix[i, j] = self.rotation_distance(self.sampled_matrix_pose[i][:3, :3], self.sampled_matrix_pose[j][:3, :3])
|
||||
return dist_matrix
|
||||
|
||||
def cluster_rotations(self):
|
||||
clustering = DBSCAN(eps=self.cluster_params['eps'], min_samples=self.cluster_params['min_samples'], metric='precomputed')
|
||||
labels = clustering.fit_predict(self.distance_matrix)
|
||||
return labels
|
||||
|
||||
def get_cluster_result(self):
|
||||
labels = self.cluster_rotations()
|
||||
cluster_num = len(set(labels)) - (1 if -1 in labels else 0)
|
||||
clusters = []
|
||||
for _ in range(cluster_num):
|
||||
clusters.append([])
|
||||
for matrix_pose, label in zip(self.sampled_matrix_pose, labels):
|
||||
if label != -1:
|
||||
clusters[label].append(matrix_pose)
|
||||
clusters.sort(key=len, reverse=True)
|
||||
return clusters
|
||||
|
||||
def get_center_matrix_pose_from_cluster(self, cluster):
|
||||
min_total_distance = float('inf')
|
||||
center_matrix_pose = None
|
||||
|
||||
for matrix_pose in cluster:
|
||||
total_distance = 0
|
||||
for other_matrix_pose in cluster:
|
||||
rot_distance = self.rotation_distance(matrix_pose[:3, :3], other_matrix_pose[:3, :3])
|
||||
total_distance += rot_distance
|
||||
|
||||
if total_distance < min_total_distance:
|
||||
min_total_distance = total_distance
|
||||
center_matrix_pose = matrix_pose
|
||||
|
||||
return center_matrix_pose
|
||||
|
||||
def get_candidate_poses(self):
|
||||
candidate_poses = []
|
||||
for cluster in self.clusters:
|
||||
candidate_poses.append(self.get_center_matrix_pose_from_cluster(cluster))
|
||||
return candidate_poses
|
||||
|
||||
def visualize(self):
|
||||
import plotly.graph_objects as go
|
||||
fig = go.Figure()
|
||||
if self.input_pts is not None:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=self.input_pts[:, 0], y=self.input_pts[:, 1], z=self.input_pts[:, 2],
|
||||
mode='markers', marker=dict(size=1, color='gray', opacity=0.5), name='Input Points'
|
||||
))
|
||||
colors = ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
|
||||
'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg']
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
color = colors[i]
|
||||
candidate_pose = self.candidate_matrix_poses[i]
|
||||
origin_candidate = candidate_pose[:3, 3]
|
||||
z_axis_candidate = candidate_pose[:3, 2]
|
||||
for pose in cluster:
|
||||
origin = pose[:3, 3]
|
||||
z_axis = pose[:3, 2]
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin[0]], y=[origin[1]], z=[origin[2]],
|
||||
u=[z_axis[0]], v=[z_axis[1]], w=[z_axis[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.05, anchor="tail", showscale=False
|
||||
))
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin_candidate[0]], y=[origin_candidate[1]], z=[origin_candidate[2]],
|
||||
u=[z_axis_candidate[0]], v=[z_axis_candidate[1]], w=[z_axis_candidate[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.1, anchor="tail", showscale=False
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title="Clustered Poses and Input Points",
|
||||
scene=dict(
|
||||
xaxis_title='X',
|
||||
yaxis_title='Y',
|
||||
zaxis_title='Z'
|
||||
),
|
||||
margin=dict(l=0, r=0, b=0, t=40),
|
||||
scene_camera=dict(eye=dict(x=1.25, y=1.25, z=1.25))
|
||||
)
|
||||
|
||||
fig.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
step = 0
|
||||
raw_predict_result = np.load(f"inference_result_pack/inference_result_pack/{step}/all_pred_pose_9d.npy")
|
||||
input_pts = np.loadtxt(f"inference_result_pack/inference_result_pack/{step}/input_pts.txt")
|
||||
print(raw_predict_result.shape)
|
||||
predict_result = PredictResult(raw_predict_result, input_pts, cluster_params=dict(eps=0.25, min_samples=3))
|
||||
print(predict_result)
|
||||
print(len(predict_result.candidate_matrix_poses))
|
||||
print(predict_result.distance_matrix)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
predict_result.visualize()
|
||||
|
@ -6,16 +6,16 @@ runner:
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: train_ab_partial
|
||||
name: train_ab_global_only_p++_wp
|
||||
root_dir: "experiments"
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
epoch: 922 # -1 stands for last epoch
|
||||
|
||||
test:
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
|
||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||
output_dir: "/media/hofee/data/data/new_partial_inference_test_output"
|
||||
output_dir: "/media/hofee/data/data/p++_wp"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
min_new_area: 1.0
|
||||
@ -52,7 +52,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@ -60,6 +60,10 @@ pipeline:
|
||||
global_scanned_feat: True
|
||||
|
||||
module:
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
params_name: light
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
|
36
configs/local/simulation_config.yaml
Normal file
36
configs/local/simulation_config.yaml
Normal file
@ -0,0 +1,36 @@
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: simulation_debug
|
||||
root_dir: "experiments"
|
||||
|
||||
simulation:
|
||||
robot:
|
||||
urdf_path: "assets/franka_panda/panda.urdf"
|
||||
initial_position: [0, 0, 0] # 机械臂基座位置
|
||||
initial_orientation: [0, 0, 0] # 机械臂基座朝向(欧拉角)
|
||||
|
||||
turntable:
|
||||
radius: 0.3 # 转盘半径(米)
|
||||
height: 0.1 # 转盘高度
|
||||
center_position: [0.8, 0, 0.4]
|
||||
|
||||
target:
|
||||
obj_dir: /media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/assets/object_meshes
|
||||
obj_name: "google_scan-box_0185"
|
||||
scale: 1.0 # 缩放系数
|
||||
mass: 0.1 # 质量(kg)
|
||||
rgba_color: [0.8, 0.8, 0.8, 1.0] # 目标物体颜色
|
||||
|
||||
camera:
|
||||
width: 640
|
||||
height: 480
|
||||
fov: 40
|
||||
near: 0.01
|
||||
far: 5.0
|
||||
|
||||
displaytable:
|
@ -15,13 +15,13 @@ runner:
|
||||
overlap_area_threshold: 30
|
||||
compute_with_normal: False
|
||||
scan_points_threshold: 10
|
||||
overwrite: False
|
||||
overwrite: False
|
||||
seq_num: 10
|
||||
dataset_list:
|
||||
- OmniObject3d
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
root_dir: /data/hofee/nbv_rec_part2_preprocessed
|
||||
from: 155
|
||||
to: 165 # ..-1 means end
|
||||
root_dir: /media/hofee/data/data/test_bottle/view
|
||||
from: 0
|
||||
to: -1 # ..-1 means end
|
||||
|
@ -8,16 +8,16 @@ runner:
|
||||
root_dir: experiments
|
||||
generate:
|
||||
port: 5002
|
||||
from: 1
|
||||
from: 0
|
||||
to: 50 # -1 means all
|
||||
object_dir: C:\\Document\\Datasets\\scaled_object_meshes
|
||||
table_model_path: C:\\Document\\Datasets\\table.obj
|
||||
output_dir: C:\\Document\\Datasets\\debug_generate_view
|
||||
object_dir: /media/hofee/data/data/test_bottle/bottle_mesh
|
||||
table_model_path: /media/hofee/data/data/others/table.obj
|
||||
output_dir: /media/hofee/data/data/test_bottle/view
|
||||
binocular_vision: true
|
||||
plane_size: 10
|
||||
max_views: 512
|
||||
min_views: 128
|
||||
random_view_ratio: 0.02
|
||||
random_view_ratio: 0.002
|
||||
min_cam_table_included_degree: 20
|
||||
max_diag: 0.7
|
||||
min_diag: 0.01
|
||||
@ -34,7 +34,7 @@ runner:
|
||||
max_y: 0.05
|
||||
min_z: 0.01
|
||||
max_z: 0.01
|
||||
random_rotation_ratio: 0.3
|
||||
random_rotation_ratio: 0.0
|
||||
random_objects:
|
||||
num: 4
|
||||
cluster: 0.9
|
||||
|
@ -7,19 +7,19 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: train_ab_global_only_with_wp_p++_strong
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: True
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
max_epochs: 5000
|
||||
save_checkpoint_interval: 1
|
||||
test_first: True
|
||||
test_first: False
|
||||
|
||||
train:
|
||||
optimizer:
|
||||
type: Adam
|
||||
lr: 0.0001
|
||||
losses:
|
||||
losses:
|
||||
- gf_loss
|
||||
dataset: OmniObject3d_train
|
||||
test:
|
||||
@ -39,7 +39,7 @@ dataset:
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 80
|
||||
batch_size: 64
|
||||
num_workers: 128
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@ -80,7 +80,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@ -96,6 +96,10 @@ module:
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
params_name: strong
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
num_heads: 4
|
||||
@ -106,7 +110,7 @@ module:
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 5120
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
@ -7,6 +7,7 @@ from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
@ -114,8 +115,13 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def voxel_downsample_with_mask(self, pts, voxel_size):
|
||||
pass
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
@ -129,6 +135,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [])
|
||||
start_time = time.time()
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
@ -150,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
total_points += len(downsampled_target_point_cloud)
|
||||
start_indices.append(total_points)
|
||||
|
||||
|
||||
end_time = time.time()
|
||||
#Log.info(f"load data time: {end_time - start_time}")
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
@ -164,14 +177,27 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
best_to_world_9d = np.concatenate(
|
||||
[best_to_world_6d, best_to_world_trans], axis=0
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||
|
||||
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
scanned_pts_mask = []
|
||||
for idx, start_idx in enumerate(start_indices):
|
||||
if idx == len(start_indices) - 1:
|
||||
break
|
||||
end_idx = start_indices[idx+1]
|
||||
view_inverse = inverse[start_idx:end_idx]
|
||||
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
scanned_pts_mask.append(mask)
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
@ -197,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
|
||||
collate_data["scanned_pts_mask"] = [
|
||||
torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
]
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
@ -206,12 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
@ -227,9 +257,9 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/data/hofee/data/packed_preprocessed_data",
|
||||
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
|
@ -75,6 +75,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 1)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
@ -90,6 +92,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
|
||||
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
@ -50,11 +50,12 @@ class SeqReconstructionDataset(BaseDataset):
|
||||
if not os.path.exists(os.path.join(self.root_dir, scene_name)):
|
||||
continue
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
return scene_name_list
|
||||
|
||||
def get_scene_name_list(self):
|
||||
return self.scene_name_list
|
||||
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
total = len(self.scene_name_list)
|
||||
@ -63,11 +64,15 @@ class SeqReconstructionDataset(BaseDataset):
|
||||
scene_max_cr_idx = 0
|
||||
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
|
||||
|
||||
for i in range(frame_len):
|
||||
for i in range(10,frame_len):
|
||||
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||
print(pts.shape)
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
print(i)
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": i,
|
||||
@ -179,9 +184,9 @@ if __name__ == "__main__":
|
||||
np.random.seed(seed)
|
||||
|
||||
config = {
|
||||
"root_dir": "/media/hofee/data/data/new_testset",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/view",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "/media/hofee/data/data/OmniObject3d_test.txt",
|
||||
"split_file": "/media/hofee/data/data/test_bottle/test_bottle.txt",
|
||||
"load_from_preprocess": True,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
@ -189,7 +194,7 @@ if __name__ == "__main__":
|
||||
"type": namespace.Mode.TEST,
|
||||
}
|
||||
|
||||
output_dir = "/media/hofee/data/data/new_testset_output"
|
||||
output_dir = "/media/hofee/data/data/test_bottle/preprocessed_dataset"
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
ds = SeqReconstructionDataset(config)
|
||||
|
@ -66,7 +66,7 @@ if __name__ == "__main__":
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/preprocessed_dataset",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
|
162
modules/module_lib/pointnet2_modules.py
Normal file
162
modules/module_lib/pointnet2_modules.py
Normal file
@ -0,0 +1,162 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from . import pointnet2_utils
|
||||
from . import pytorch_utils as pt_utils
|
||||
from typing import List
|
||||
|
||||
|
||||
class _PointnetSAModuleBase(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.npoint = None
|
||||
self.groupers = None
|
||||
self.mlps = None
|
||||
self.pool_method = 'max_pool'
|
||||
|
||||
def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
|
||||
"""
|
||||
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
|
||||
:param features: (B, N, C) tensor of the descriptors of the the features
|
||||
:param new_xyz:
|
||||
:return:
|
||||
new_xyz: (B, npoint, 3) tensor of the new features' xyz
|
||||
new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
|
||||
"""
|
||||
new_features_list = []
|
||||
|
||||
xyz_flipped = xyz.transpose(1, 2).contiguous()
|
||||
if new_xyz is None:
|
||||
new_xyz = pointnet2_utils.gather_operation(
|
||||
xyz_flipped,
|
||||
pointnet2_utils.furthest_point_sample(xyz, self.npoint)
|
||||
).transpose(1, 2).contiguous() if self.npoint is not None else None
|
||||
|
||||
for i in range(len(self.groupers)):
|
||||
new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample)
|
||||
|
||||
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample)
|
||||
|
||||
if self.pool_method == 'max_pool':
|
||||
new_features = F.max_pool2d(
|
||||
new_features, kernel_size=[1, new_features.size(3)]
|
||||
) # (B, mlp[-1], npoint, 1)
|
||||
elif self.pool_method == 'avg_pool':
|
||||
new_features = F.avg_pool2d(
|
||||
new_features, kernel_size=[1, new_features.size(3)]
|
||||
) # (B, mlp[-1], npoint, 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint)
|
||||
new_features_list.append(new_features)
|
||||
|
||||
return new_xyz, torch.cat(new_features_list, dim=1)
|
||||
|
||||
|
||||
class PointnetSAModuleMSG(_PointnetSAModuleBase):
|
||||
"""Pointnet set abstraction layer with multiscale grouping"""
|
||||
|
||||
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
|
||||
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||
"""
|
||||
:param npoint: int
|
||||
:param radii: list of float, list of radii to group with
|
||||
:param nsamples: list of int, number of samples in each ball query
|
||||
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
|
||||
:param bn: whether to use batchnorm
|
||||
:param use_xyz:
|
||||
:param pool_method: max_pool / avg_pool
|
||||
:param instance_norm: whether to use instance_norm
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(radii) == len(nsamples) == len(mlps)
|
||||
|
||||
self.npoint = npoint
|
||||
self.groupers = nn.ModuleList()
|
||||
self.mlps = nn.ModuleList()
|
||||
for i in range(len(radii)):
|
||||
radius = radii[i]
|
||||
nsample = nsamples[i]
|
||||
self.groupers.append(
|
||||
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
|
||||
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
|
||||
)
|
||||
mlp_spec = mlps[i]
|
||||
if use_xyz:
|
||||
mlp_spec[0] += 3
|
||||
|
||||
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
|
||||
self.pool_method = pool_method
|
||||
|
||||
|
||||
class PointnetSAModule(PointnetSAModuleMSG):
|
||||
"""Pointnet set abstraction layer"""
|
||||
|
||||
def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
|
||||
bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||
"""
|
||||
:param mlp: list of int, spec of the pointnet before the global max_pool
|
||||
:param npoint: int, number of features
|
||||
:param radius: float, radius of ball
|
||||
:param nsample: int, number of samples in the ball query
|
||||
:param bn: whether to use batchnorm
|
||||
:param use_xyz:
|
||||
:param pool_method: max_pool / avg_pool
|
||||
:param instance_norm: whether to use instance_norm
|
||||
"""
|
||||
super().__init__(
|
||||
mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
|
||||
pool_method=pool_method, instance_norm=instance_norm
|
||||
)
|
||||
|
||||
|
||||
class PointnetFPModule(nn.Module):
|
||||
r"""Propigates the features of one set to another"""
|
||||
|
||||
def __init__(self, *, mlp: List[int], bn: bool = True):
|
||||
"""
|
||||
:param mlp: list of int
|
||||
:param bn: whether to use batchnorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
|
||||
|
||||
def forward(
|
||||
self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
:param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
|
||||
:param known: (B, m, 3) tensor of the xyz positions of the known features
|
||||
:param unknow_feats: (B, C1, n) tensor of the features to be propigated to
|
||||
:param known_feats: (B, C2, m) tensor of features to be propigated
|
||||
:return:
|
||||
new_features: (B, mlp[-1], n) tensor of the features of the unknown features
|
||||
"""
|
||||
if known is not None:
|
||||
dist, idx = pointnet2_utils.three_nn(unknown, known)
|
||||
dist_recip = 1.0 / (dist + 1e-8)
|
||||
norm = torch.sum(dist_recip, dim=2, keepdim=True)
|
||||
weight = dist_recip / norm
|
||||
|
||||
interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
|
||||
else:
|
||||
interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))
|
||||
|
||||
if unknow_feats is not None:
|
||||
new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n)
|
||||
else:
|
||||
new_features = interpolated_feats
|
||||
|
||||
new_features = new_features.unsqueeze(-1)
|
||||
|
||||
new_features = self.mlp(new_features)
|
||||
|
||||
return new_features.squeeze(-1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
291
modules/module_lib/pointnet2_utils.py
Normal file
291
modules/module_lib/pointnet2_utils.py
Normal file
@ -0,0 +1,291 @@
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch.autograd import Function
|
||||
import torch.nn as nn
|
||||
from typing import Tuple
|
||||
import sys
|
||||
|
||||
import pointnet2_cuda as pointnet2
|
||||
|
||||
|
||||
class FurthestPointSampling(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
|
||||
"""
|
||||
Uses iterative furthest point sampling to select a set of npoint features that have the largest
|
||||
minimum distance
|
||||
:param ctx:
|
||||
:param xyz: (B, N, 3) where N > npoint
|
||||
:param npoint: int, number of features in the sampled set
|
||||
:return:
|
||||
output: (B, npoint) tensor containing the set
|
||||
"""
|
||||
assert xyz.is_contiguous()
|
||||
|
||||
B, N, _ = xyz.size()
|
||||
output = torch.cuda.IntTensor(B, npoint)
|
||||
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
|
||||
|
||||
pointnet2.furthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(xyz, a=None):
|
||||
return None, None
|
||||
|
||||
|
||||
furthest_point_sample = FurthestPointSampling.apply
|
||||
|
||||
|
||||
class GatherOperation(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param features: (B, C, N)
|
||||
:param idx: (B, npoint) index tensor of the features to gather
|
||||
:return:
|
||||
output: (B, C, npoint)
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
|
||||
B, npoint = idx.size()
|
||||
_, C, N = features.size()
|
||||
output = torch.cuda.FloatTensor(B, C, npoint)
|
||||
|
||||
pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output)
|
||||
|
||||
ctx.for_backwards = (idx, C, N)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
idx, C, N = ctx.for_backwards
|
||||
B, npoint = idx.size()
|
||||
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data)
|
||||
return grad_features, None
|
||||
|
||||
|
||||
gather_operation = GatherOperation.apply
|
||||
|
||||
|
||||
class ThreeNN(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Find the three nearest neighbors of unknown in known
|
||||
:param ctx:
|
||||
:param unknown: (B, N, 3)
|
||||
:param known: (B, M, 3)
|
||||
:return:
|
||||
dist: (B, N, 3) l2 distance to the three nearest neighbors
|
||||
idx: (B, N, 3) index of 3 nearest neighbors
|
||||
"""
|
||||
assert unknown.is_contiguous()
|
||||
assert known.is_contiguous()
|
||||
|
||||
B, N, _ = unknown.size()
|
||||
m = known.size(1)
|
||||
dist2 = torch.cuda.FloatTensor(B, N, 3)
|
||||
idx = torch.cuda.IntTensor(B, N, 3)
|
||||
|
||||
pointnet2.three_nn_wrapper(B, N, m, unknown, known, dist2, idx)
|
||||
return torch.sqrt(dist2), idx
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, a=None, b=None):
|
||||
return None, None
|
||||
|
||||
|
||||
three_nn = ThreeNN.apply
|
||||
|
||||
|
||||
class ThreeInterpolate(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Performs weight linear interpolation on 3 features
|
||||
:param ctx:
|
||||
:param features: (B, C, M) Features descriptors to be interpolated from
|
||||
:param idx: (B, n, 3) three nearest neighbors of the target features in features
|
||||
:param weight: (B, n, 3) weights
|
||||
:return:
|
||||
output: (B, C, N) tensor of the interpolated features
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
assert weight.is_contiguous()
|
||||
|
||||
B, c, m = features.size()
|
||||
n = idx.size(1)
|
||||
ctx.three_interpolate_for_backward = (idx, weight, m)
|
||||
output = torch.cuda.FloatTensor(B, c, n)
|
||||
|
||||
pointnet2.three_interpolate_wrapper(B, c, m, n, features, idx, weight, output)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
:param ctx:
|
||||
:param grad_out: (B, C, N) tensor with gradients of outputs
|
||||
:return:
|
||||
grad_features: (B, C, M) tensor with gradients of features
|
||||
None:
|
||||
None:
|
||||
"""
|
||||
idx, weight, m = ctx.three_interpolate_for_backward
|
||||
B, c, n = grad_out.size()
|
||||
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, c, m).zero_())
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
|
||||
pointnet2.three_interpolate_grad_wrapper(B, c, n, m, grad_out_data, idx, weight, grad_features.data)
|
||||
return grad_features, None, None
|
||||
|
||||
|
||||
three_interpolate = ThreeInterpolate.apply
|
||||
|
||||
|
||||
class GroupingOperation(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param features: (B, C, N) tensor of features to group
|
||||
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
|
||||
:return:
|
||||
output: (B, C, npoint, nsample) tensor
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
|
||||
B, nfeatures, nsample = idx.size()
|
||||
_, C, N = features.size()
|
||||
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
|
||||
|
||||
pointnet2.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
|
||||
|
||||
ctx.for_backwards = (idx, N)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
:param ctx:
|
||||
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
|
||||
:return:
|
||||
grad_features: (B, C, N) gradient of the features
|
||||
"""
|
||||
idx, N = ctx.for_backwards
|
||||
|
||||
B, C, npoint, nsample = grad_out.size()
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
pointnet2.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
|
||||
return grad_features, None
|
||||
|
||||
|
||||
grouping_operation = GroupingOperation.apply
|
||||
|
||||
|
||||
class BallQuery(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param radius: float, radius of the balls
|
||||
:param nsample: int, maximum number of features in the balls
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: (B, npoint, 3) centers of the ball query
|
||||
:return:
|
||||
idx: (B, npoint, nsample) tensor with the indicies of the features that form the query balls
|
||||
"""
|
||||
assert new_xyz.is_contiguous()
|
||||
assert xyz.is_contiguous()
|
||||
|
||||
B, N, _ = xyz.size()
|
||||
npoint = new_xyz.size(1)
|
||||
idx = torch.cuda.IntTensor(B, npoint, nsample).zero_()
|
||||
|
||||
pointnet2.ball_query_wrapper(B, N, npoint, radius, nsample, new_xyz, xyz, idx)
|
||||
return idx
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, a=None):
|
||||
return None, None, None, None
|
||||
|
||||
|
||||
ball_query = BallQuery.apply
|
||||
|
||||
|
||||
class QueryAndGroup(nn.Module):
|
||||
def __init__(self, radius: float, nsample: int, use_xyz: bool = True):
|
||||
"""
|
||||
:param radius: float, radius of ball
|
||||
:param nsample: int, maximum number of features to gather in the ball
|
||||
:param use_xyz:
|
||||
"""
|
||||
super().__init__()
|
||||
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
|
||||
|
||||
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]:
|
||||
"""
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: (B, npoint, 3) centroids
|
||||
:param features: (B, C, N) descriptors of the features
|
||||
:return:
|
||||
new_features: (B, 3 + C, npoint, nsample)
|
||||
"""
|
||||
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
|
||||
xyz_trans = xyz.transpose(1, 2).contiguous()
|
||||
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
|
||||
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
|
||||
|
||||
if features is not None:
|
||||
grouped_features = grouping_operation(features, idx)
|
||||
if self.use_xyz:
|
||||
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, C + 3, npoint, nsample)
|
||||
else:
|
||||
new_features = grouped_features
|
||||
else:
|
||||
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
|
||||
new_features = grouped_xyz
|
||||
|
||||
return new_features
|
||||
|
||||
|
||||
class GroupAll(nn.Module):
|
||||
def __init__(self, use_xyz: bool = True):
|
||||
super().__init__()
|
||||
self.use_xyz = use_xyz
|
||||
|
||||
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
|
||||
"""
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: ignored
|
||||
:param features: (B, C, N) descriptors of the features
|
||||
:return:
|
||||
new_features: (B, C + 3, 1, N)
|
||||
"""
|
||||
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
|
||||
if features is not None:
|
||||
grouped_features = features.unsqueeze(2)
|
||||
if self.use_xyz:
|
||||
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
|
||||
else:
|
||||
new_features = grouped_features
|
||||
else:
|
||||
new_features = grouped_xyz
|
||||
|
||||
return new_features
|
236
modules/module_lib/pytorch_utils.py
Normal file
236
modules/module_lib/pytorch_utils.py
Normal file
@ -0,0 +1,236 @@
|
||||
import torch.nn as nn
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
class SharedMLP(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args: List[int],
|
||||
*,
|
||||
bn: bool = False,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
preact: bool = False,
|
||||
first: bool = False,
|
||||
name: str = "",
|
||||
instance_norm: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
for i in range(len(args) - 1):
|
||||
self.add_module(
|
||||
name + 'layer{}'.format(i),
|
||||
Conv2d(
|
||||
args[i],
|
||||
args[i + 1],
|
||||
bn=(not first or not preact or (i != 0)) and bn,
|
||||
activation=activation
|
||||
if (not first or not preact or (i != 0)) else None,
|
||||
preact=preact,
|
||||
instance_norm=instance_norm
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class _ConvBase(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=None,
|
||||
batch_norm=None,
|
||||
bias=True,
|
||||
preact=False,
|
||||
name="",
|
||||
instance_norm=False,
|
||||
instance_norm_func=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
bias = bias and (not bn)
|
||||
conv_unit = conv(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=bias
|
||||
)
|
||||
init(conv_unit.weight)
|
||||
if bias:
|
||||
nn.init.constant_(conv_unit.bias, 0)
|
||||
|
||||
if bn:
|
||||
if not preact:
|
||||
bn_unit = batch_norm(out_size)
|
||||
else:
|
||||
bn_unit = batch_norm(in_size)
|
||||
if instance_norm:
|
||||
if not preact:
|
||||
in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
|
||||
else:
|
||||
in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)
|
||||
|
||||
if preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', bn_unit)
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
if not bn and instance_norm:
|
||||
self.add_module(name + 'in', in_unit)
|
||||
|
||||
self.add_module(name + 'conv', conv_unit)
|
||||
|
||||
if not preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', bn_unit)
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
if not bn and instance_norm:
|
||||
self.add_module(name + 'in', in_unit)
|
||||
|
||||
|
||||
class _BNBase(nn.Sequential):
|
||||
|
||||
def __init__(self, in_size, batch_norm=None, name=""):
|
||||
super().__init__()
|
||||
self.add_module(name + "bn", batch_norm(in_size))
|
||||
|
||||
nn.init.constant_(self[0].weight, 1.0)
|
||||
nn.init.constant_(self[0].bias, 0)
|
||||
|
||||
|
||||
class BatchNorm1d(_BNBase):
|
||||
|
||||
def __init__(self, in_size: int, *, name: str = ""):
|
||||
super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)
|
||||
|
||||
|
||||
class BatchNorm2d(_BNBase):
|
||||
|
||||
def __init__(self, in_size: int, name: str = ""):
|
||||
super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)
|
||||
|
||||
|
||||
class Conv1d(_ConvBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
kernel_size: int = 1,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=nn.init.kaiming_normal_,
|
||||
bias: bool = True,
|
||||
preact: bool = False,
|
||||
name: str = "",
|
||||
instance_norm=False
|
||||
):
|
||||
super().__init__(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=nn.Conv1d,
|
||||
batch_norm=BatchNorm1d,
|
||||
bias=bias,
|
||||
preact=preact,
|
||||
name=name,
|
||||
instance_norm=instance_norm,
|
||||
instance_norm_func=nn.InstanceNorm1d
|
||||
)
|
||||
|
||||
|
||||
class Conv2d(_ConvBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
kernel_size: Tuple[int, int] = (1, 1),
|
||||
stride: Tuple[int, int] = (1, 1),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=nn.init.kaiming_normal_,
|
||||
bias: bool = True,
|
||||
preact: bool = False,
|
||||
name: str = "",
|
||||
instance_norm=False
|
||||
):
|
||||
super().__init__(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=nn.Conv2d,
|
||||
batch_norm=BatchNorm2d,
|
||||
bias=bias,
|
||||
preact=preact,
|
||||
name=name,
|
||||
instance_norm=instance_norm,
|
||||
instance_norm_func=nn.InstanceNorm2d
|
||||
)
|
||||
|
||||
|
||||
class FC(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=None,
|
||||
preact: bool = False,
|
||||
name: str = ""
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
fc = nn.Linear(in_size, out_size, bias=not bn)
|
||||
if init is not None:
|
||||
init(fc.weight)
|
||||
if not bn:
|
||||
nn.init.constant(fc.bias, 0)
|
||||
|
||||
if preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', BatchNorm1d(in_size))
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
self.add_module(name + 'fc', fc)
|
||||
|
||||
if not preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', BatchNorm1d(out_size))
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
149
modules/pointnet++_encoder.py
Normal file
149
modules/pointnet++_encoder.py
Normal file
@ -0,0 +1,149 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import os
|
||||
import sys
|
||||
path = os.path.abspath(__file__)
|
||||
for i in range(2):
|
||||
path = os.path.dirname(path)
|
||||
PROJECT_ROOT = path
|
||||
sys.path.append(PROJECT_ROOT)
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from modules.module_lib.pointnet2_modules import PointnetSAModuleMSG
|
||||
|
||||
|
||||
ClsMSG_CFG_Dense = {
|
||||
'NPOINTS': [512, 256, 128, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||
'NSAMPLE': [[32, 64], [16, 32], [8, 16], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 512], [256, 384, 512]]],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Light = {
|
||||
'NPOINTS': [512, 256, 128, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 512], [256, 384, 512]]],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Light_2048 = {
|
||||
'NPOINTS': [512, 256, 128, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 1024], [256, 512, 1024]]],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Strong = {
|
||||
'NPOINTS': [512, 256, 128, 64, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16],[0.16, 0.32], [None, None]],
|
||||
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [16, 32], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 512], [256, 512, 512]],
|
||||
[[512, 512, 2048], [512, 1024, 2048]]
|
||||
],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Lighter = {
|
||||
'NPOINTS': [512, 256, 128, 64, None],
|
||||
'RADIUS': [[0.01], [0.02], [0.04], [0.08], [None]],
|
||||
'NSAMPLE': [[64], [32], [16], [8], [None]],
|
||||
'MLPS': [[[32, 32, 64]],
|
||||
[[64, 64, 128]],
|
||||
[[128, 196, 256]],
|
||||
[[256, 256, 512]],
|
||||
[[512, 512, 1024]]],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
|
||||
def select_params(name):
|
||||
if name == 'light':
|
||||
return ClsMSG_CFG_Light
|
||||
elif name == 'lighter':
|
||||
return ClsMSG_CFG_Lighter
|
||||
elif name == 'dense':
|
||||
return ClsMSG_CFG_Dense
|
||||
elif name == 'light_2048':
|
||||
return ClsMSG_CFG_Light_2048
|
||||
elif name == 'strong':
|
||||
return ClsMSG_CFG_Strong
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def break_up_pc(pc):
|
||||
xyz = pc[..., 0:3].contiguous()
|
||||
features = (
|
||||
pc[..., 3:].transpose(1, 2).contiguous()
|
||||
if pc.size(-1) > 3 else None
|
||||
)
|
||||
|
||||
return xyz, features
|
||||
|
||||
|
||||
@stereotype.module("pointnet++_encoder")
|
||||
class PointNet2Encoder(nn.Module):
|
||||
def encode_points(self, pts, require_per_point_feat=False):
|
||||
return self.forward(pts)
|
||||
|
||||
def __init__(self, config:dict):
|
||||
super().__init__()
|
||||
|
||||
channel_in = config.get("in_dim", 3) - 3
|
||||
params_name = config.get("params_name", "light")
|
||||
|
||||
self.SA_modules = nn.ModuleList()
|
||||
selected_params = select_params(params_name)
|
||||
for k in range(selected_params['NPOINTS'].__len__()):
|
||||
mlps = selected_params['MLPS'][k].copy()
|
||||
channel_out = 0
|
||||
for idx in range(mlps.__len__()):
|
||||
mlps[idx] = [channel_in] + mlps[idx]
|
||||
channel_out += mlps[idx][-1]
|
||||
|
||||
self.SA_modules.append(
|
||||
PointnetSAModuleMSG(
|
||||
npoint=selected_params['NPOINTS'][k],
|
||||
radii=selected_params['RADIUS'][k],
|
||||
nsamples=selected_params['NSAMPLE'][k],
|
||||
mlps=mlps,
|
||||
use_xyz=True,
|
||||
bn=True
|
||||
)
|
||||
)
|
||||
channel_in = channel_out
|
||||
|
||||
def forward(self, point_cloud: torch.cuda.FloatTensor):
|
||||
xyz, features = break_up_pc(point_cloud)
|
||||
|
||||
l_xyz, l_features = [xyz], [features]
|
||||
for i in range(len(self.SA_modules)):
|
||||
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
|
||||
l_xyz.append(li_xyz)
|
||||
l_features.append(li_features)
|
||||
return l_features[-1].squeeze(-1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
seed = 100
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
net = PointNet2Encoder(config={"in_dim": 3, "params_name": "strong"}).cuda()
|
||||
pts = torch.randn(2, 2444, 3).cuda()
|
||||
print(torch.mean(pts, dim=1))
|
||||
pre = net.encode_points(pts)
|
||||
print(pre.shape)
|
@ -164,10 +164,10 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#root = "/media/hofee/repository/new_data_with_normal"
|
||||
root = r"H:\AI\Datasets\nbv_rec_part2"
|
||||
root = r"/media/hofee/data/data/test_bottle/view"
|
||||
scene_list = os.listdir(root)
|
||||
from_idx = 0 # 1000
|
||||
to_idx = 600 # 1500
|
||||
to_idx = len(scene_list) # 1500
|
||||
|
||||
|
||||
cnt = 0
|
||||
|
@ -12,6 +12,7 @@ from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
from utils.pts import PtsUtil
|
||||
from beans.predict_result import PredictResult
|
||||
|
||||
@stereotype.runner("inferencer_server")
|
||||
class InferencerServer(Runner):
|
||||
@ -50,6 +51,7 @@ class InferencerServer(Runner):
|
||||
def get_result(self, output_data):
|
||||
|
||||
pred_pose_9d = output_data["pred_pose_9d"]
|
||||
pred_pose_9d = np.asarray(PredictResult(pred_pose_9d.cpu().numpy(), None, cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses, dtype=np.float32)
|
||||
result = {
|
||||
"pred_pose_9d": pred_pose_9d.tolist()
|
||||
}
|
||||
|
@ -4,6 +4,7 @@ from utils.render import RenderUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from beans.predict_result import PredictResult
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@ -82,6 +83,7 @@ class Inferencer(Runner):
|
||||
data = test_set.__getitem__(i)
|
||||
scene_name = data["scene_name"]
|
||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||
|
||||
if os.path.exists(inference_result_path):
|
||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||
continue
|
||||
@ -138,97 +140,98 @@ class Inferencer(Runner):
|
||||
pred_cr_seq = [last_pred_cr]
|
||||
success = 0
|
||||
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
||||
import time
|
||||
#import time
|
||||
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
||||
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
output = self.pipeline(input_data)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
# # save pred_pose_9d ------
|
||||
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
|
||||
# scene_dir = os.path.join(root, scene_name)
|
||||
# if not os.path.exists(scene_dir):
|
||||
# os.makedirs(scene_dir)
|
||||
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
|
||||
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
|
||||
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
|
||||
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
|
||||
# np.savetxt(pts_path, np_combined_scanned_pts)
|
||||
# # ----- ----- -----
|
||||
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
|
||||
# -----------------------
|
||||
# import ipdb; ipdb.set_trace()
|
||||
# predict_result.visualize()
|
||||
# -----------------------
|
||||
pred_pose_9d_candidates = predict_result.candidate_9d_poses
|
||||
for pred_pose_9d in pred_pose_9d_candidates:
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, down_sampled_model_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
Log.yellow("no overlap!")
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
Log.yellow("no overlap!")
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
|
||||
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for pts in scanned_view_pts:
|
||||
total_points += pts.shape[0]
|
||||
start_indices.append(total_points)
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N, require_idx=True)
|
||||
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
scanned_pts_mask = []
|
||||
for idx, start_idx in enumerate(start_indices):
|
||||
if idx == len(start_indices) - 1:
|
||||
break
|
||||
end_idx = start_indices[idx+1]
|
||||
view_inverse = inverse[start_idx:end_idx]
|
||||
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
scanned_pts_mask.append(mask)
|
||||
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
input_data["scanned_pts_mask"] = [torch.tensor(scanned_pts_mask, dtype=torch.bool)]
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
|
||||
last_pts_num = pts_num
|
||||
last_pts_num = pts_num
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||
@ -270,7 +273,14 @@ class Inferencer(Runner):
|
||||
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
def save_inference_result(self, dataset_name, scene_name, output):
|
||||
dataset_dir = os.path.join(self.output_dir, dataset_name)
|
||||
|
456
runners/simulator.py
Normal file
456
runners/simulator.py
Normal file
@ -0,0 +1,456 @@
|
||||
import pybullet as p
|
||||
import pybullet_data
|
||||
import numpy as np
|
||||
import os
|
||||
import time
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from utils.control import ControlUtil
|
||||
|
||||
|
||||
@stereotype.runner("simulator")
|
||||
class Simulator(Runner):
|
||||
CREATE: str = "create"
|
||||
SIMULATE: str = "simulate"
|
||||
INIT_GRIPPER_POSE:np.ndarray = np.asarray(
|
||||
[[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292],
|
||||
[ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.40499909],
|
||||
[ 0.56884584, -0.04739109 ,-0.82107382 ,0.76881103],
|
||||
[ 0. , 0. , 0. , 1. ]])
|
||||
TURNTABLE_WORLD_TO_PYBULLET_WORLD:np.ndarray = np.asarray(
|
||||
[[1, 0, 0, 0.8],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 1, 0.5],
|
||||
[0, 0, 0, 1]])
|
||||
|
||||
debug_pose = np.asarray([
|
||||
[
|
||||
0.992167055606842,
|
||||
-0.10552699863910675,
|
||||
0.06684812903404236,
|
||||
-0.07388903945684433
|
||||
],
|
||||
[
|
||||
0.10134342312812805,
|
||||
0.3670985698699951,
|
||||
-0.9246448874473572,
|
||||
-0.41582486033439636
|
||||
],
|
||||
[
|
||||
0.07303514331579208,
|
||||
0.9241767525672913,
|
||||
0.37491756677627563,
|
||||
1.0754833221435547
|
||||
],
|
||||
[
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0
|
||||
]])
|
||||
|
||||
def __init__(self, config_path):
|
||||
super().__init__(config_path)
|
||||
self.config_path = config_path
|
||||
self.robot_id = None
|
||||
self.turntable_id = None
|
||||
self.target_id = None
|
||||
camera_config = ConfigManager.get("simulation", "camera")
|
||||
self.camera_params = {
|
||||
'width': camera_config["width"],
|
||||
'height': camera_config["height"],
|
||||
'fov': camera_config["fov"],
|
||||
'near': camera_config["near"],
|
||||
'far': camera_config["far"]
|
||||
}
|
||||
self.sim_config = ConfigManager.get("simulation")
|
||||
|
||||
def run(self, cmd):
|
||||
print(f"Simulator run {cmd}")
|
||||
if cmd == self.CREATE:
|
||||
self.prepare_env()
|
||||
self.create_env()
|
||||
elif cmd == self.SIMULATE:
|
||||
self.simulate()
|
||||
|
||||
def simulate(self):
|
||||
self.reset()
|
||||
self.init()
|
||||
debug_pose = Simulator.debug_pose
|
||||
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||||
debug_pose = debug_pose @ offset
|
||||
for _ in range(10000):
|
||||
debug_pose_2 = np.eye(4)
|
||||
debug_pose_2[0,0] = -1
|
||||
debug_pose_2[2,3] = 0.5
|
||||
self.move_to(debug_pose_2)
|
||||
# Wait for the system to stabilize
|
||||
for _ in range(20): # Simulate 20 steps to ensure stability
|
||||
p.stepSimulation()
|
||||
time.sleep(0.001) # Add small delay to ensure physics simulation
|
||||
|
||||
depth_img, segm_img = self.take_picture()
|
||||
p.stepSimulation()
|
||||
|
||||
def prepare_env(self):
|
||||
p.connect(p.GUI)
|
||||
p.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||
p.setGravity(0, 0, 0)
|
||||
p.loadURDF("plane.urdf")
|
||||
|
||||
def create_env(self):
|
||||
print(self.config)
|
||||
robot_config = self.sim_config["robot"]
|
||||
turntable_config = self.sim_config["turntable"]
|
||||
target_config = self.sim_config["target"]
|
||||
|
||||
self.robot_id = p.loadURDF(
|
||||
robot_config["urdf_path"],
|
||||
robot_config["initial_position"],
|
||||
p.getQuaternionFromEuler(robot_config["initial_orientation"]),
|
||||
useFixedBase=True
|
||||
)
|
||||
|
||||
p.changeDynamics(
|
||||
self.robot_id,
|
||||
linkIndex=-1,
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
visual_shape_id = p.createVisualShape(
|
||||
shapeType=p.GEOM_CYLINDER,
|
||||
radius=turntable_config["radius"],
|
||||
length=turntable_config["height"],
|
||||
rgbaColor=[0.7, 0.7, 0.7, 1]
|
||||
)
|
||||
collision_shape_id = p.createCollisionShape(
|
||||
shapeType=p.GEOM_CYLINDER,
|
||||
radius=turntable_config["radius"],
|
||||
height=turntable_config["height"]
|
||||
)
|
||||
self.turntable_id = p.createMultiBody(
|
||||
baseMass=0, # 设置质量为0使其成为静态物体
|
||||
baseCollisionShapeIndex=collision_shape_id,
|
||||
baseVisualShapeIndex=visual_shape_id,
|
||||
basePosition=turntable_config["center_position"]
|
||||
)
|
||||
|
||||
# 禁用转盘的动力学
|
||||
p.changeDynamics(
|
||||
self.turntable_id,
|
||||
-1, # -1 表示基座
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
|
||||
obj_path = os.path.join(target_config["obj_dir"], target_config["obj_name"], "mesh.obj")
|
||||
|
||||
assert os.path.exists(obj_path), f"Error: File not found at {obj_path}"
|
||||
|
||||
# 加载OBJ文件作为目标物体
|
||||
target_visual = p.createVisualShape(
|
||||
shapeType=p.GEOM_MESH,
|
||||
fileName=obj_path,
|
||||
rgbaColor=target_config["rgba_color"],
|
||||
specularColor=[0.4, 0.4, 0.4],
|
||||
meshScale=[target_config["scale"]] * 3
|
||||
)
|
||||
|
||||
# 使用简化的碰撞形状
|
||||
target_collision = p.createCollisionShape(
|
||||
shapeType=p.GEOM_MESH,
|
||||
fileName=obj_path,
|
||||
meshScale=[target_config["scale"]] * 3,
|
||||
flags=p.GEOM_FORCE_CONCAVE_TRIMESH # 尝试使用凹面网格
|
||||
)
|
||||
|
||||
|
||||
# 创建目标物体
|
||||
self.target_id = p.createMultiBody(
|
||||
baseMass=0, # 设置质量为0使其成为静态物体
|
||||
baseCollisionShapeIndex=target_collision,
|
||||
baseVisualShapeIndex=target_visual,
|
||||
basePosition=[
|
||||
turntable_config["center_position"][0],
|
||||
turntable_config["center_position"][1],
|
||||
turntable_config["height"] + turntable_config["center_position"][2]
|
||||
],
|
||||
baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0])
|
||||
)
|
||||
|
||||
# 禁用目标物体的动力学
|
||||
p.changeDynamics(
|
||||
self.target_id,
|
||||
-1, # -1 表示基座
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
# 创建固定约束,将目标物体固定在转盘上
|
||||
cid = p.createConstraint(
|
||||
parentBodyUniqueId=self.turntable_id,
|
||||
parentLinkIndex=-1, # -1 表示基座
|
||||
childBodyUniqueId=self.target_id,
|
||||
childLinkIndex=-1, # -1 表示基座
|
||||
jointType=p.JOINT_FIXED,
|
||||
jointAxis=[0, 0, 0],
|
||||
parentFramePosition=[0, 0, 0], # 相对于转盘中心的偏移
|
||||
childFramePosition=[0, 0, 0] # 相对于物体中心的偏移
|
||||
)
|
||||
|
||||
# 设置约束参数
|
||||
p.changeConstraint(cid, maxForce=100) # 设置最大力,确保约束稳定
|
||||
|
||||
def move_robot_to_pose(self, target_matrix):
|
||||
# 从4x4齐次矩阵中提取位置(前3个元素)
|
||||
position = target_matrix[:3, 3]
|
||||
|
||||
# 从3x3旋转矩阵中提取方向四元数
|
||||
R = target_matrix[:3, :3]
|
||||
|
||||
# 计算四元数的w分量
|
||||
w = np.sqrt(max(0, 1 + R[0,0] + R[1,1] + R[2,2])) / 2
|
||||
|
||||
# 避免除零错误,同时处理不同情况
|
||||
if abs(w) < 1e-8:
|
||||
# 当w接近0时的特殊情况
|
||||
x = np.sqrt(max(0, 1 + R[0,0] - R[1,1] - R[2,2])) / 2
|
||||
y = np.sqrt(max(0, 1 - R[0,0] + R[1,1] - R[2,2])) / 2
|
||||
z = np.sqrt(max(0, 1 - R[0,0] - R[1,1] + R[2,2])) / 2
|
||||
|
||||
# 确定符号
|
||||
if R[2,1] - R[1,2] < 0: x = -x
|
||||
if R[0,2] - R[2,0] < 0: y = -y
|
||||
if R[1,0] - R[0,1] < 0: z = -z
|
||||
else:
|
||||
# 正常情况
|
||||
x = (R[2,1] - R[1,2]) / (4 * w)
|
||||
y = (R[0,2] - R[2,0]) / (4 * w)
|
||||
z = (R[1,0] - R[0,1]) / (4 * w)
|
||||
|
||||
orientation = (x, y, z, w)
|
||||
|
||||
# 设置IK求解参数
|
||||
num_joints = p.getNumJoints(self.robot_id)
|
||||
lower_limits = []
|
||||
upper_limits = []
|
||||
joint_ranges = []
|
||||
rest_poses = []
|
||||
|
||||
# 获取关节限制和默认姿态
|
||||
for i in range(num_joints):
|
||||
joint_info = p.getJointInfo(self.robot_id, i)
|
||||
lower_limits.append(joint_info[8])
|
||||
upper_limits.append(joint_info[9])
|
||||
joint_ranges.append(joint_info[9] - joint_info[8])
|
||||
rest_poses.append(0) # 可以设置一个较好的默认姿态
|
||||
|
||||
# 使用增强版IK求解器,考虑碰撞避障
|
||||
joint_poses = p.calculateInverseKinematics(
|
||||
self.robot_id,
|
||||
7, # end effector link index
|
||||
position,
|
||||
orientation,
|
||||
lowerLimits=lower_limits,
|
||||
upperLimits=upper_limits,
|
||||
jointRanges=joint_ranges,
|
||||
restPoses=rest_poses,
|
||||
maxNumIterations=100,
|
||||
residualThreshold=1e-4
|
||||
)
|
||||
|
||||
# 分步移动到目标位置,同时检查碰撞
|
||||
current_poses = [p.getJointState(self.robot_id, i)[0] for i in range(7)]
|
||||
steps = 50 # 分50步移动
|
||||
|
||||
for step in range(steps):
|
||||
# 线性插值计算中间位置
|
||||
intermediate_poses = []
|
||||
for current, target in zip(current_poses, joint_poses):
|
||||
t = (step + 1) / steps
|
||||
intermediate = current + (target - current) * t
|
||||
intermediate_poses.append(intermediate)
|
||||
|
||||
# 设置关节位置
|
||||
for i in range(7):
|
||||
p.setJointMotorControl2(
|
||||
self.robot_id,
|
||||
i,
|
||||
p.POSITION_CONTROL,
|
||||
intermediate_poses[i]
|
||||
)
|
||||
|
||||
# 执行一步模拟
|
||||
p.stepSimulation()
|
||||
|
||||
# 检查碰撞
|
||||
if p.getContactPoints(self.robot_id, self.turntable_id):
|
||||
print("检测到潜在碰撞,停止移动")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def rotate_turntable(self, angle_degrees):
|
||||
# 旋转转盘
|
||||
current_pos, current_orn = p.getBasePositionAndOrientation(self.turntable_id)
|
||||
current_orn = p.getEulerFromQuaternion(current_orn)
|
||||
|
||||
new_orn = list(current_orn)
|
||||
new_orn[2] += np.radians(angle_degrees)
|
||||
new_orn_quat = p.getQuaternionFromEuler(new_orn)
|
||||
|
||||
p.resetBasePositionAndOrientation(
|
||||
self.turntable_id,
|
||||
current_pos,
|
||||
new_orn_quat
|
||||
)
|
||||
|
||||
# 同时旋转目标物体
|
||||
target_pos, target_orn = p.getBasePositionAndOrientation(self.target_id)
|
||||
target_orn = p.getEulerFromQuaternion(target_orn)
|
||||
|
||||
# 更新目标物体的方向
|
||||
target_orn = list(target_orn)
|
||||
target_orn[2] += np.radians(angle_degrees)
|
||||
target_orn_quat = p.getQuaternionFromEuler(target_orn)
|
||||
|
||||
# 计算物体新的位置(绕转盘中心旋转)
|
||||
turntable_center = current_pos
|
||||
relative_pos = np.array(target_pos) - np.array(turntable_center)
|
||||
|
||||
# 创建旋转矩阵
|
||||
theta = np.radians(angle_degrees)
|
||||
rotation_matrix = np.array([
|
||||
[np.cos(theta), -np.sin(theta), 0],
|
||||
[np.sin(theta), np.cos(theta), 0],
|
||||
[0, 0, 1]
|
||||
])
|
||||
|
||||
# 计算新的相对位置
|
||||
new_relative_pos = rotation_matrix.dot(relative_pos)
|
||||
new_pos = np.array(turntable_center) + new_relative_pos
|
||||
|
||||
# 更新目标物体的位置和方向
|
||||
p.resetBasePositionAndOrientation(
|
||||
self.target_id,
|
||||
new_pos,
|
||||
target_orn_quat
|
||||
)
|
||||
|
||||
def get_camera_pose(self):
|
||||
end_effector_link = 7 # Franka末端执行器的链接索引
|
||||
state = p.getLinkState(self.robot_id, end_effector_link)
|
||||
ee_pos = state[0] # 世界坐标系中的位置
|
||||
camera_orn = state[1] # 世界坐标系中的朝向(四元数)
|
||||
|
||||
# 计算相机的视角矩阵
|
||||
rot_matrix = p.getMatrixFromQuaternion(camera_orn)
|
||||
rot_matrix = np.array(rot_matrix).reshape(3, 3)
|
||||
|
||||
# 相机的前向向量(与末端执行器的x轴对齐)
|
||||
camera_forward = rot_matrix.dot(np.array([0, 0, 1])) # x轴方向
|
||||
|
||||
# 将相机位置向前偏移0.1米
|
||||
offset = 0.12
|
||||
camera_pos = np.array(ee_pos) + camera_forward * offset
|
||||
camera_target = camera_pos + camera_forward
|
||||
|
||||
# 相机的上向量(与末端执行器的z轴对齐)
|
||||
camera_up = rot_matrix.dot(np.array([1, 0, 0])) # z轴方向
|
||||
|
||||
return camera_pos, camera_target, camera_up
|
||||
|
||||
def take_picture(self):
|
||||
camera_pos, camera_target, camera_up = self.get_camera_pose()
|
||||
|
||||
view_matrix = p.computeViewMatrix(
|
||||
cameraEyePosition=camera_pos,
|
||||
cameraTargetPosition=camera_target,
|
||||
cameraUpVector=camera_up
|
||||
)
|
||||
|
||||
projection_matrix = p.computeProjectionMatrixFOV(
|
||||
fov=self.camera_params['fov'],
|
||||
aspect=self.camera_params['width'] / self.camera_params['height'],
|
||||
nearVal=self.camera_params['near'],
|
||||
farVal=self.camera_params['far']
|
||||
)
|
||||
|
||||
_,_,rgb_img,depth_img,segm_img = p.getCameraImage(
|
||||
width=self.camera_params['width'],
|
||||
height=self.camera_params['height'],
|
||||
viewMatrix=view_matrix,
|
||||
projectionMatrix=projection_matrix,
|
||||
renderer=p.ER_BULLET_HARDWARE_OPENGL
|
||||
)
|
||||
|
||||
depth_img = self.camera_params['far'] * self.camera_params['near'] / (
|
||||
self.camera_params['far'] - (self.camera_params['far'] - self.camera_params['near']) * depth_img)
|
||||
|
||||
depth_img = np.array(depth_img)
|
||||
segm_img = np.array(segm_img)
|
||||
|
||||
return depth_img, segm_img
|
||||
|
||||
def reset(self):
|
||||
target_pos = [0.5, 0, 1]
|
||||
target_orn = p.getQuaternionFromEuler([np.pi, 0, 0])
|
||||
target_matrix = np.eye(4)
|
||||
target_matrix[:3, 3] = target_pos
|
||||
target_matrix[:3, :3] = np.asarray(p.getMatrixFromQuaternion(target_orn)).reshape(3,3)
|
||||
self.move_robot_to_pose(target_matrix)
|
||||
|
||||
def init(self):
|
||||
self.move_to(Simulator.INIT_GRIPPER_POSE)
|
||||
|
||||
def move_to(self, pose: np.ndarray):
|
||||
#delta_degree, min_new_cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
|
||||
#print(delta_degree)
|
||||
min_new_cam_to_pybullet_world = Simulator.TURNTABLE_WORLD_TO_PYBULLET_WORLD@pose
|
||||
self.move_to_cam_pose(min_new_cam_to_pybullet_world)
|
||||
#self.rotate_turntable(delta_degree)
|
||||
|
||||
|
||||
|
||||
def __del__(self):
|
||||
p.disconnect()
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
return super().create_experiment(backup_name)
|
||||
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def move_to_cam_pose(self, camera_pose: np.ndarray):
|
||||
# 从相机位姿矩阵中提取位置和旋转矩阵
|
||||
camera_pos = camera_pose[:3, 3]
|
||||
R_camera = camera_pose[:3, :3]
|
||||
|
||||
# 相机的朝向向量(z轴)
|
||||
forward = R_camera[:, 2]
|
||||
|
||||
# 由于相机与末端执行器之间有固定偏移,需要计算末端执行器位置
|
||||
# 相机在末端执行器前方0.12米
|
||||
gripper_pos = camera_pos - forward * 0.12
|
||||
|
||||
# 末端执行器的旋转矩阵需要考虑与相机坐标系的固定变换
|
||||
# 假设相机的forward对应gripper的z轴,相机的x轴对应gripper的x轴
|
||||
R_gripper = R_camera
|
||||
|
||||
# 构建4x4齐次变换矩阵
|
||||
gripper_pose = np.eye(4)
|
||||
gripper_pose[:3, :3] = R_gripper
|
||||
gripper_pose[:3, 3] = gripper_pos
|
||||
print(gripper_pose)
|
||||
# 移动机器人到计算出的位姿
|
||||
return self.move_robot_to_pose(gripper_pose)
|
@ -9,7 +9,7 @@ class ViewGenerator(Runner):
|
||||
self.config_path = config_path
|
||||
|
||||
def run(self):
|
||||
result = subprocess.run(['blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
||||
result = subprocess.run(['/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
||||
print()
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
|
59
utils/control.py
Normal file
59
utils/control.py
Normal file
@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
import time
|
||||
|
||||
class ControlUtil:
|
||||
|
||||
curr_rotation = 0
|
||||
|
||||
@staticmethod
|
||||
def check_limit(new_cam_to_world):
|
||||
if new_cam_to_world[0,3] < 0 or new_cam_to_world[1,3] > 0:
|
||||
# if new_cam_to_world[0,3] > 0:
|
||||
return False
|
||||
x = abs(new_cam_to_world[0,3])
|
||||
y = abs(new_cam_to_world[1,3])
|
||||
tan_y_x = y/x
|
||||
min_angle = 0 / 180 * np.pi
|
||||
max_angle = 90 / 180 * np.pi
|
||||
if tan_y_x < np.tan(min_angle) or tan_y_x > np.tan(max_angle):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple:
|
||||
if ControlUtil.check_limit(cam_to_world):
|
||||
return 0, cam_to_world
|
||||
else:
|
||||
min_display_table_rot = 180
|
||||
min_new_cam_to_world = None
|
||||
for display_table_rot in np.linspace(0.1,360, 1800):
|
||||
new_world_to_world = ControlUtil.get_z_axis_rot_mat(display_table_rot)
|
||||
new_cam_to_new_world = cam_to_world
|
||||
new_cam_to_world = new_world_to_world @ new_cam_to_new_world
|
||||
|
||||
if ControlUtil.check_limit(new_cam_to_world):
|
||||
if display_table_rot < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world
|
||||
if abs(display_table_rot - 360) < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world
|
||||
|
||||
if min_new_cam_to_world is None:
|
||||
raise ValueError("No valid display table rotation found")
|
||||
|
||||
delta_degree = min_display_table_rot - ControlUtil.curr_rotation
|
||||
ControlUtil.curr_rotation = min_display_table_rot
|
||||
return delta_degree, min_new_cam_to_world
|
||||
|
||||
@staticmethod
|
||||
def get_z_axis_rot_mat(degree):
|
||||
radian = np.radians(degree)
|
||||
return np.array([
|
||||
[np.cos(radian), -np.sin(radian), 0, 0],
|
||||
[np.sin(radian), np.cos(radian), 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
|
@ -70,7 +70,7 @@ class RenderUtil:
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||
|
||||
|
||||
@ -83,11 +83,12 @@ class RenderUtil:
|
||||
shutil.copy(scene_info_path, os.path.join(temp_dir, "scene_info.json"))
|
||||
params_data_path = os.path.join(temp_dir, "params.json")
|
||||
with open(params_data_path, 'w') as f:
|
||||
json.dump(params, f)
|
||||
json.dump(params, f)
|
||||
result = subprocess.run([
|
||||
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
# print(result)
|
||||
#print(result)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
|
18
utils/vis.py
18
utils/vis.py
@ -7,6 +7,7 @@ import trimesh
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.pose import PoseUtil
|
||||
|
||||
class visualizeUtil:
|
||||
|
||||
@ -33,7 +34,22 @@ class visualizeUtil:
|
||||
all_cam_axis = np.array(all_cam_axis).reshape(-1, 3)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_pos.txt"), all_cam_pos)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_axis.txt"), all_cam_axis)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_cam_pose_and_cam_axis(cam_pose, is_6d_pose):
|
||||
if is_6d_pose:
|
||||
matrix_cam_pose = np.eye(4)
|
||||
matrix_cam_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(cam_pose[:6])
|
||||
matrix_cam_pose[:3, 3] = cam_pose[6:]
|
||||
else:
|
||||
matrix_cam_pose = cam_pose
|
||||
cam_pos = matrix_cam_pose[:3, 3]
|
||||
cam_axis = matrix_cam_pose[:3, 2]
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
return cam_pos, sample_points
|
||||
|
||||
@staticmethod
|
||||
def save_all_combined_pts(root, scene, output_dir):
|
||||
length = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
|
Loading…
x
Reference in New Issue
Block a user