upd inference
This commit is contained in:
parent
9c2625b11e
commit
dec67e8255
162
beans/predict_result.py
Normal file
162
beans/predict_result.py
Normal file
@ -0,0 +1,162 @@
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
class PredictResult:
|
||||
def __init__(self, raw_predict_result, input_pts=None, cluster_params=dict(eps=0.5, min_samples=2)):
|
||||
self.input_pts = input_pts
|
||||
self.cluster_params = cluster_params
|
||||
self.sampled_9d_pose = raw_predict_result
|
||||
self.sampled_matrix_pose = self.get_sampled_matrix_pose()
|
||||
self.distance_matrix = self.calculate_distance_matrix()
|
||||
self.clusters = self.get_cluster_result()
|
||||
self.candidate_matrix_poses = self.get_candidate_poses()
|
||||
self.candidate_9d_poses = [np.concatenate((self.matrix_to_rotation_6d_numpy(matrix[:3,:3]), matrix[:3,3].reshape(-1,)), axis=-1) for matrix in self.candidate_matrix_poses]
|
||||
self.cluster_num = len(self.clusters)
|
||||
|
||||
@staticmethod
|
||||
def rotation_6d_to_matrix_numpy(d6):
|
||||
a1, a2 = d6[:3], d6[3:]
|
||||
b1 = a1 / np.linalg.norm(a1)
|
||||
b2 = a2 - np.dot(b1, a2) * b1
|
||||
b2 = b2 / np.linalg.norm(b2)
|
||||
b3 = np.cross(b1, b2)
|
||||
return np.stack((b1, b2, b3), axis=-2)
|
||||
|
||||
@staticmethod
|
||||
def matrix_to_rotation_6d_numpy(matrix):
|
||||
return np.copy(matrix[:2, :]).reshape((6,))
|
||||
|
||||
def __str__(self):
|
||||
info = "Predict Result:\n"
|
||||
info += f" Predicted pose number: {len(self.sampled_9d_pose)}\n"
|
||||
info += f" Cluster number: {self.cluster_num}\n"
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
info += f" - Cluster {i} size: {len(cluster)}\n"
|
||||
max_distance = np.max(self.distance_matrix[self.distance_matrix != 0])
|
||||
min_distance = np.min(self.distance_matrix[self.distance_matrix != 0])
|
||||
info += f" Max distance: {max_distance}\n"
|
||||
info += f" Min distance: {min_distance}\n"
|
||||
return info
|
||||
|
||||
def get_sampled_matrix_pose(self):
|
||||
sampled_matrix_pose = []
|
||||
for pose in self.sampled_9d_pose:
|
||||
rotation = pose[:6]
|
||||
translation = pose[6:]
|
||||
pose = self.rotation_6d_to_matrix_numpy(rotation)
|
||||
pose = np.concatenate((pose, translation.reshape(-1, 1)), axis=-1)
|
||||
pose = np.concatenate((pose, np.array([[0, 0, 0, 1]])), axis=-2)
|
||||
sampled_matrix_pose.append(pose)
|
||||
return np.array(sampled_matrix_pose)
|
||||
|
||||
def rotation_distance(self, R1, R2):
|
||||
R = np.dot(R1.T, R2)
|
||||
trace = np.trace(R)
|
||||
angle = np.arccos(np.clip((trace - 1) / 2, -1, 1))
|
||||
return angle
|
||||
|
||||
def calculate_distance_matrix(self):
|
||||
n = len(self.sampled_matrix_pose)
|
||||
dist_matrix = np.zeros((n, n))
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
dist_matrix[i, j] = self.rotation_distance(self.sampled_matrix_pose[i][:3, :3], self.sampled_matrix_pose[j][:3, :3])
|
||||
return dist_matrix
|
||||
|
||||
def cluster_rotations(self):
|
||||
clustering = DBSCAN(eps=self.cluster_params['eps'], min_samples=self.cluster_params['min_samples'], metric='precomputed')
|
||||
labels = clustering.fit_predict(self.distance_matrix)
|
||||
return labels
|
||||
|
||||
def get_cluster_result(self):
|
||||
labels = self.cluster_rotations()
|
||||
cluster_num = len(set(labels)) - (1 if -1 in labels else 0)
|
||||
clusters = []
|
||||
for _ in range(cluster_num):
|
||||
clusters.append([])
|
||||
for matrix_pose, label in zip(self.sampled_matrix_pose, labels):
|
||||
if label != -1:
|
||||
clusters[label].append(matrix_pose)
|
||||
clusters.sort(key=len, reverse=True)
|
||||
return clusters
|
||||
|
||||
def get_center_matrix_pose_from_cluster(self, cluster):
|
||||
min_total_distance = float('inf')
|
||||
center_matrix_pose = None
|
||||
|
||||
for matrix_pose in cluster:
|
||||
total_distance = 0
|
||||
for other_matrix_pose in cluster:
|
||||
rot_distance = self.rotation_distance(matrix_pose[:3, :3], other_matrix_pose[:3, :3])
|
||||
total_distance += rot_distance
|
||||
|
||||
if total_distance < min_total_distance:
|
||||
min_total_distance = total_distance
|
||||
center_matrix_pose = matrix_pose
|
||||
|
||||
return center_matrix_pose
|
||||
|
||||
def get_candidate_poses(self):
|
||||
candidate_poses = []
|
||||
for cluster in self.clusters:
|
||||
candidate_poses.append(self.get_center_matrix_pose_from_cluster(cluster))
|
||||
return candidate_poses
|
||||
|
||||
def visualize(self):
|
||||
import plotly.graph_objects as go
|
||||
fig = go.Figure()
|
||||
if self.input_pts is not None:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=self.input_pts[:, 0], y=self.input_pts[:, 1], z=self.input_pts[:, 2],
|
||||
mode='markers', marker=dict(size=1, color='gray', opacity=0.5), name='Input Points'
|
||||
))
|
||||
colors = ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
|
||||
'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg']
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
color = colors[i]
|
||||
candidate_pose = self.candidate_matrix_poses[i]
|
||||
origin_candidate = candidate_pose[:3, 3]
|
||||
z_axis_candidate = candidate_pose[:3, 2]
|
||||
for pose in cluster:
|
||||
origin = pose[:3, 3]
|
||||
z_axis = pose[:3, 2]
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin[0]], y=[origin[1]], z=[origin[2]],
|
||||
u=[z_axis[0]], v=[z_axis[1]], w=[z_axis[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.05, anchor="tail", showscale=False
|
||||
))
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin_candidate[0]], y=[origin_candidate[1]], z=[origin_candidate[2]],
|
||||
u=[z_axis_candidate[0]], v=[z_axis_candidate[1]], w=[z_axis_candidate[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.1, anchor="tail", showscale=False
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title="Clustered Poses and Input Points",
|
||||
scene=dict(
|
||||
xaxis_title='X',
|
||||
yaxis_title='Y',
|
||||
zaxis_title='Z'
|
||||
),
|
||||
margin=dict(l=0, r=0, b=0, t=40),
|
||||
scene_camera=dict(eye=dict(x=1.25, y=1.25, z=1.25))
|
||||
)
|
||||
|
||||
fig.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
step = 0
|
||||
raw_predict_result = np.load(f"inference_result_pack/inference_result_pack/{step}/all_pred_pose_9d.npy")
|
||||
input_pts = np.loadtxt(f"inference_result_pack/inference_result_pack/{step}/input_pts.txt")
|
||||
print(raw_predict_result.shape)
|
||||
predict_result = PredictResult(raw_predict_result, input_pts, cluster_params=dict(eps=0.25, min_samples=3))
|
||||
print(predict_result)
|
||||
print(len(predict_result.candidate_matrix_poses))
|
||||
print(predict_result.distance_matrix)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
predict_result.visualize()
|
||||
|
@ -6,16 +6,16 @@ runner:
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: train_ab_global_only_p++_wp
|
||||
root_dir: "experiments"
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
epoch: 922 # -1 stands for last epoch
|
||||
|
||||
test:
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
|
||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||
output_dir: " /media/hofee/data/data/temp"
|
||||
output_dir: "/media/hofee/data/data/p++_wp_temp_cluster"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
min_new_area: 1.0
|
||||
@ -52,7 +52,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@ -60,6 +60,9 @@ pipeline:
|
||||
global_scanned_feat: True
|
||||
|
||||
module:
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
|
@ -75,6 +75,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 100)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
|
@ -4,6 +4,7 @@ from utils.render import RenderUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from beans.predict_result import PredictResult
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@ -82,6 +83,7 @@ class Inferencer(Runner):
|
||||
data = test_set.__getitem__(i)
|
||||
scene_name = data["scene_name"]
|
||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||
|
||||
if os.path.exists(inference_result_path):
|
||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||
continue
|
||||
@ -142,88 +144,87 @@ class Inferencer(Runner):
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
output = self.pipeline(input_data)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
import ipdb; ipdb.set_trace()
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
# ----- Debug -----
|
||||
|
||||
from utils.vis import visualizeUtil
|
||||
import ipdb; ipdb.set_trace()
|
||||
all_directions = []
|
||||
np.savetxt("input_pts.txt", input_data["combined_scanned_pts"].cpu().numpy()[0])
|
||||
for i in range(50):
|
||||
output = self.pipeline(input_data)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
cam_pos, sample_points = visualizeUtil.get_cam_pose_and_cam_axis(pred_pose_9d.cpu().numpy()[0], is_6d_pose=True)
|
||||
all_directions.append(sample_points)
|
||||
all_directions = np.array(all_directions)
|
||||
reshape_all_directions = all_directions.reshape(-1, 3)
|
||||
np.savetxt("all_directions.txt", reshape_all_directions)
|
||||
# ----- ----- -----
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
# # save pred_pose_9d ------
|
||||
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
|
||||
# scene_dir = os.path.join(root, scene_name)
|
||||
# if not os.path.exists(scene_dir):
|
||||
# os.makedirs(scene_dir)
|
||||
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
|
||||
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
|
||||
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
|
||||
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
|
||||
# np.savetxt(pts_path, np_combined_scanned_pts)
|
||||
# # ----- ----- -----
|
||||
pred_pose_9d_candidates = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses
|
||||
for pred_pose_9d in pred_pose_9d_candidates:
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
# if not overlap:
|
||||
# Log.yellow("no overlap!")
|
||||
# retry += 1
|
||||
# retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
# continue
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
Log.yellow("no overlap!")
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
|
||||
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
|
||||
last_pts_num = pts_num
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
|
||||
last_pts_num = pts_num
|
||||
break
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||
|
Loading…
x
Reference in New Issue
Block a user