nbv_sim/policies.py
2021-05-05 12:22:41 +02:00

159 lines
4.8 KiB
Python

from pathlib import Path
import cv_bridge
import numpy as np
import rospy
import scipy.interpolate
from geometry_msgs.msg import Pose
from sensor_msgs.msg import Image, CameraInfo
from robot_utils.spatial import Rotation, Transform
from robot_utils.ros.conversions import *
from robot_utils.ros.tf import TransformTree
from robot_utils.perception import *
from vgn import vis
from vgn.detection import VGN, compute_grasps
def get_policy(name):
if name == "single-view":
return SingleViewBaseline()
elif name == "fixed-trajectory":
return FixedTrajectoryBaseline()
else:
raise ValueError("{} policy does not exist.".format(name))
class Policy:
def __init__(self):
params = rospy.get_param("active_grasp")
self.frame_id = params["frame_id"]
# Robot
self.base_frame_id = params["base_frame_id"]
self.ee_frame_id = params["ee_frame_id"]
self.tf = TransformTree()
self.H_EE_G = Transform.from_list(params["ee_grasp_offset"])
self.target_pose_pub = rospy.Publisher("/target", Pose, queue_size=10)
# Camera
camera_name = params["camera_name"]
self.cam_frame_id = camera_name + "_optical_frame"
depth_topic = camera_name + "/depth/image_raw"
msg = rospy.wait_for_message(camera_name + "/depth/camera_info", CameraInfo)
self.intrinsic = from_camera_info_msg(msg)
self.cv_bridge = cv_bridge.CvBridge()
# TSDF
self.tsdf = UniformTSDFVolume(0.3, 40)
# VGN
params = rospy.get_param("vgn")
self.vgn = VGN(Path(params["model"]))
rospy.sleep(1.0)
self.H_B_T = self.tf.lookup(self.base_frame_id, self.frame_id, rospy.Time.now())
rospy.Subscriber(depth_topic, Image, self.sensor_cb, queue_size=1)
vis.draw_workspace(0.3)
def sensor_cb(self, msg):
self.last_depth_img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32)
self.last_extrinsic = self.tf.lookup(
self.cam_frame_id, self.frame_id, msg.header.stamp, rospy.Duration(0.1)
)
def get_tsdf_grid(self):
map_cloud = self.tsdf.get_map_cloud()
points = np.asarray(map_cloud.points)
distances = np.asarray(map_cloud.colors)[:, 0]
return create_grid_from_map_cloud(points, distances, self.tsdf.voxel_size)
def plan_best_grasp(self):
tsdf_grid = self.get_tsdf_grid()
out = self.vgn.predict(tsdf_grid)
grasps = compute_grasps(out, voxel_size=self.tsdf.voxel_size)
vis.draw_tsdf(tsdf_grid, self.tsdf.voxel_size)
vis.draw_grasps(grasps, 0.05)
# Ensure that the camera is pointing forward.
grasp = grasps[0]
rot = grasp.pose.rotation
axis = rot.as_matrix()[:, 0]
if axis[0] < 0:
grasp.pose.rotation = rot * Rotation.from_euler("z", np.pi)
# Compute target pose of the EE
H_T_G = grasp.pose
H_B_EE = self.H_B_T * H_T_G * self.H_EE_G.inv()
return H_B_EE
class SingleViewBaseline(Policy):
def __init__(sel):
super().__init__()
def start(self):
self.done = False
def update(self):
# Integrate image
self.tsdf.integrate(
self.last_depth_img,
self.intrinsic,
self.last_extrinsic,
)
# Visualize reconstruction
cloud = self.tsdf.get_scene_cloud()
vis.draw_points(np.asarray(cloud.points))
# Plan grasp
self.best_grasp = self.plan_best_grasp()
self.done = True
return
class FixedTrajectoryBaseline(Policy):
def __init__(self):
super().__init__()
self.duration = 4.0
self.radius = 0.1
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
def start(self):
self.tic = rospy.Time.now()
timeout = rospy.Duration(0.1)
x0 = self.tf.lookup(self.base_frame_id, self.ee_frame_id, self.tic, timeout)
self.origin = np.r_[x0.translation[0] + self.radius, x0.translation[1:]]
self.target = x0
self.done = False
def update(self):
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
# Integrate image
self.tsdf.integrate(
self.last_depth_img,
self.intrinsic,
self.last_extrinsic,
)
# Visualize current integration
cloud = self.tsdf.get_scene_cloud()
vis.draw_points(np.asarray(cloud.points))
if elapsed_time > self.duration:
self.best_grasp = self.plan_best_grasp()
self.done = True
return
t = self.m(elapsed_time)
self.target.translation = (
self.origin + np.r_[self.radius * np.cos(t), self.radius * np.sin(t), 0.0]
)
self.target_pose_pub.publish(to_pose_msg(self.target))