125 lines
3.7 KiB
Python
125 lines
3.7 KiB
Python
import numpy as np
|
|
import scipy.interpolate
|
|
import rospy
|
|
|
|
from active_grasp.policy import BasePolicy
|
|
from robot_helpers.ros import tf
|
|
from vgn.utils import look_at
|
|
|
|
|
|
class SingleView(BasePolicy):
|
|
"""
|
|
Process a single image from the initial viewpoint.
|
|
"""
|
|
|
|
def update(self, img, extrinsic):
|
|
self.integrate_img(img, extrinsic)
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
|
|
|
|
class TopView(BasePolicy):
|
|
"""
|
|
Move the camera to a top-down view of the target object.
|
|
"""
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
eye = np.r_[self.center[:2], self.center[2] + 0.3]
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
self.target = look_at(eye, self.center, up)
|
|
|
|
def update(self, img, extrinsic):
|
|
self.integrate_img(img, extrinsic)
|
|
error = extrinsic.translation - self.target.translation
|
|
if np.linalg.norm(error) < 0.01:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
return self.target
|
|
|
|
|
|
class RandomView(BasePolicy):
|
|
"""
|
|
Move the camera to a random viewpoint on a circle centered above the target.
|
|
"""
|
|
|
|
def __init__(self, intrinsic):
|
|
super().__init__(intrinsic)
|
|
self.r = 0.06 # radius of the circle
|
|
self.h = 0.3 # distance above bbox center
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
t = np.random.uniform(np.pi, 3.0 * np.pi)
|
|
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
self.target = look_at(eye, self.center, up)
|
|
|
|
def update(self, img, extrinsic):
|
|
self.integrate_img(img, extrinsic)
|
|
error = extrinsic.translation - self.target.translation
|
|
if np.linalg.norm(error) < 0.01:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
return self.target
|
|
|
|
|
|
class FixedTrajectory(BasePolicy):
|
|
"""
|
|
Follow a pre-defined circular trajectory centered above the target object.
|
|
"""
|
|
|
|
def __init__(self, intrinsic):
|
|
super().__init__(intrinsic)
|
|
self.r = 0.08
|
|
self.h = 0.3
|
|
self.duration = 6.0
|
|
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
self.tic = rospy.Time.now()
|
|
|
|
def update(self, img, extrinsic):
|
|
self.integrate_img(img, extrinsic)
|
|
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
|
|
if elapsed_time > self.duration:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
else:
|
|
t = self.m(elapsed_time)
|
|
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
target = look_at(eye, self.center, up)
|
|
return target
|
|
|
|
|
|
class AlignmentView(BasePolicy):
|
|
"""
|
|
Align the camera with an initial grasp prediction as proposed in (Gualtieri, 2017).
|
|
"""
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
self.target = None
|
|
|
|
def update(self, img, extrinsic):
|
|
self.integrate_img(img, extrinsic)
|
|
|
|
if not self.target:
|
|
grasp = self.predict_best_grasp()
|
|
if not grasp:
|
|
self.done = True
|
|
return
|
|
R, t = grasp.pose.rotation, grasp.pose.translation
|
|
eye = R.apply([0.0, 0.0, -0.16]) + t
|
|
center = t
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
self.target = look_at(eye, center, up)
|
|
|
|
error = extrinsic.translation - self.target.translation
|
|
if np.linalg.norm(error) < 0.01:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
return self.target
|