115 lines
3.5 KiB
Python
115 lines
3.5 KiB
Python
import numpy as np
|
|
import scipy.interpolate
|
|
import rospy
|
|
|
|
from active_grasp.policy import BasePolicy
|
|
from robot_utils.ros import tf
|
|
from vgn.utils import look_at
|
|
|
|
|
|
class SingleViewBaseline(BasePolicy):
|
|
"""
|
|
Process a single image from the initial viewpoint.
|
|
"""
|
|
|
|
def update(self):
|
|
self.integrate_latest_image()
|
|
self.draw_scene_cloud()
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
|
|
|
|
class TopBaseline(BasePolicy):
|
|
"""
|
|
Move the camera to a top-down view of the target object.
|
|
"""
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
center = (bbox.min + bbox.max) / 2.0
|
|
eye = np.r_[center[:2], center[2] + 0.3]
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
|
|
|
def update(self):
|
|
current = tf.lookup(self.base_frame, self.ee_frame)
|
|
error = current.translation - self.target.translation
|
|
|
|
if np.linalg.norm(error) < 0.01:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
else:
|
|
self.integrate_latest_image()
|
|
self.draw_scene_cloud()
|
|
self.draw_camera_path()
|
|
return self.target
|
|
|
|
|
|
class RandomBaseline(BasePolicy):
|
|
"""
|
|
Move the camera to a random viewpoint on a circle centered above the target.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.r = 0.06
|
|
self.h = 0.3
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
circle_center = (bbox.min + bbox.max) / 2.0
|
|
circle_center[2] += self.h
|
|
t = np.random.uniform(np.pi, 3.0 * np.pi)
|
|
eye = circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
|
|
center = (self.bbox.min + self.bbox.max) / 2.0
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
|
|
|
def update(self):
|
|
current = tf.lookup(self.base_frame, self.ee_frame)
|
|
error = current.translation - self.target.translation
|
|
|
|
if np.linalg.norm(error) < 0.01:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
else:
|
|
self.integrate_latest_image()
|
|
self.draw_scene_cloud()
|
|
self.draw_camera_path()
|
|
return self.target
|
|
|
|
|
|
class FixedTrajectoryBaseline(BasePolicy):
|
|
"""
|
|
Follow a pre-defined circular trajectory centered above the target object.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.r = 0.06
|
|
self.h = 0.3
|
|
self.duration = 6.0
|
|
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
|
|
|
|
def activate(self, bbox):
|
|
super().activate(bbox)
|
|
self.tic = rospy.Time.now()
|
|
self.circle_center = (bbox.min + bbox.max) / 2.0
|
|
self.circle_center[2] += self.h
|
|
|
|
def update(self):
|
|
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
|
|
if elapsed_time > self.duration:
|
|
self.best_grasp = self.predict_best_grasp()
|
|
self.done = True
|
|
else:
|
|
self.integrate_latest_image()
|
|
t = self.m(elapsed_time)
|
|
eye = self.circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
|
|
center = (self.bbox.min + self.bbox.max) / 2.0
|
|
up = np.r_[1.0, 0.0, 0.0]
|
|
target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
|
self.draw_scene_cloud()
|
|
self.draw_camera_path()
|
|
return target
|