import numpy as np import scipy.interpolate import rospy from active_grasp.policy import BasePolicy from robot_utils.ros import tf from vgn.utils import look_at class SingleViewBaseline(BasePolicy): """ Process a single image from the initial viewpoint. """ def update(self): self.integrate_latest_image() self.draw_scene_cloud() self.best_grasp = self.predict_best_grasp() self.done = True class TopBaseline(BasePolicy): """ Move the camera to a top-down view of the target object. """ def activate(self, bbox): super().activate(bbox) center = (bbox.min + bbox.max) / 2.0 eye = np.r_[center[:2], center[2] + 0.3] up = np.r_[1.0, 0.0, 0.0] self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv() def update(self): current = tf.lookup(self.base_frame, self.ee_frame) error = current.translation - self.target.translation if np.linalg.norm(error) < 0.01: self.best_grasp = self.predict_best_grasp() self.done = True else: self.integrate_latest_image() self.draw_scene_cloud() self.draw_camera_path() return self.target class RandomBaseline(BasePolicy): """ Move the camera to a random viewpoint on a circle centered above the target. """ def __init__(self): super().__init__() self.r = 0.06 self.h = 0.3 def activate(self, bbox): super().activate(bbox) circle_center = (bbox.min + bbox.max) / 2.0 circle_center[2] += self.h t = np.random.uniform(np.pi, 3.0 * np.pi) eye = circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0] center = (self.bbox.min + self.bbox.max) / 2.0 up = np.r_[1.0, 0.0, 0.0] self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv() def update(self): current = tf.lookup(self.base_frame, self.ee_frame) error = current.translation - self.target.translation if np.linalg.norm(error) < 0.01: self.best_grasp = self.predict_best_grasp() self.done = True else: self.integrate_latest_image() self.draw_scene_cloud() self.draw_camera_path() return self.target class FixedTrajectoryBaseline(BasePolicy): """ Follow a pre-defined circular trajectory centered above the target object. """ def __init__(self): super().__init__() self.r = 0.06 self.h = 0.3 self.duration = 6.0 self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi]) def activate(self, bbox): super().activate(bbox) self.tic = rospy.Time.now() self.circle_center = (bbox.min + bbox.max) / 2.0 self.circle_center[2] += self.h def update(self): elapsed_time = (rospy.Time.now() - self.tic).to_sec() if elapsed_time > self.duration: self.best_grasp = self.predict_best_grasp() self.done = True else: self.integrate_latest_image() t = self.m(elapsed_time) eye = self.circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0] center = (self.bbox.min + self.bbox.max) / 2.0 up = np.r_[1.0, 0.0, 0.0] target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv() self.draw_scene_cloud() self.draw_camera_path() return target