Change to new VGN interface

This commit is contained in:
Michel Breyer 2021-05-05 11:18:43 +02:00
parent cd9fb814e9
commit c37af70f56
3 changed files with 31 additions and 38 deletions

View File

@ -1,5 +1,8 @@
active_grasp:
frame_id: task
base_frame_id: panda_link0
ee_frame_id: panda_hand
ee_grasp_offset: [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.06]
camera_name: cam
vgn:
model: $(find vgn)/data/models/vgn_conv.pth

View File

@ -299,17 +299,17 @@ Visualization Manager:
Value: false
Field of View: 0.7853981852531433
Focal Point:
X: 0.1477860063314438
Y: 0.1189696341753006
Z: 0.4057367146015167
X: 0.192186176776886
Y: 0.14037109911441803
Z: 0.3879348933696747
Focal Shape Fixed Size: true
Focal Shape Size: 0.05000000074505806
Invert Z Axis: false
Name: Current View
Near Clip Distance: 0.009999999776482582
Pitch: 0.10479649901390076
Pitch: 0.20979644358158112
Target Frame: <Fixed Frame>
Yaw: 5.323526859283447
Yaw: 5.238524913787842
Saved: ~
Window Geometry:
Displays:
@ -327,5 +327,5 @@ Window Geometry:
Views:
collapsed: true
Width: 1200
X: 992
Y: 65
X: 720
Y: 27

View File

@ -4,7 +4,6 @@ import cv_bridge
import numpy as np
import rospy
import scipy.interpolate
import torch
from geometry_msgs.msg import Pose
from sensor_msgs.msg import Image, CameraInfo
@ -14,8 +13,7 @@ from robot_utils.ros.conversions import *
from robot_utils.ros.tf import TransformTree
from robot_utils.perception import *
from vgn import vis
from vgn.detection import *
from vgn.grasp import from_voxel_coordinates
from vgn.detection import VGN, compute_grasps
def get_policy(name):
@ -29,14 +27,17 @@ def get_policy(name):
class Policy:
def __init__(self):
self.frame_id = rospy.get_param("~frame_id")
params = rospy.get_param("active_grasp")
self.frame_id = params["frame_id"]
# Robot
self.tf_tree = TransformTree()
self.H_EE_G = Transform.from_list(params["ee_grasp_offset"])
self.target_pose_pub = rospy.Publisher("/target", Pose, queue_size=10)
# Camera
camera_name = rospy.get_param("~camera_name")
camera_name = params["camera_name"]
self.cam_frame_id = camera_name + "_optical_frame"
self.cv_bridge = cv_bridge.CvBridge()
depth_topic = camera_name + "/depth/image_raw"
@ -45,9 +46,8 @@ class Policy:
self.intrinsic = from_camera_info_msg(msg)
# VGN
model_path = Path(rospy.get_param("vgn/model"))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.net = load_network(model_path, self.device)
params = rospy.get_param("vgn")
self.vgn = VGN(Path(params["model"]))
rospy.sleep(1.0)
self.H_B_T = self.tf_tree.lookup("panda_link0", self.frame_id, rospy.Time.now())
@ -99,37 +99,27 @@ class FixedTrajectoryBaseline(Policy):
map_cloud = self.tsdf.get_map_cloud()
points = np.asarray(map_cloud.points)
distances = np.asarray(map_cloud.colors)[:, 0]
tsdf_grid = grid_from_cloud(points, distances, self.tsdf.voxel_size)
tsdf_grid = create_grid_from_map_cloud(
points, distances, self.tsdf.voxel_size
)
out = self.vgn.predict(tsdf_grid)
grasps = compute_grasps(out, voxel_size=self.tsdf.voxel_size)
vis.draw_tsdf(tsdf_grid.squeeze(), self.tsdf.voxel_size)
qual, rot, width = predict(tsdf_grid, self.net, self.device)
qual, rot, width = process(tsdf_grid, qual, rot, width)
grasps, scores = select(qual.copy(), rot, width)
grasps, scores = np.asarray(grasps), np.asarray(scores)
grasps = [from_voxel_coordinates(g, self.tsdf.voxel_size) for g in grasps]
# Select the highest grasp
heights = np.empty(len(grasps))
for i, grasp in enumerate(grasps):
heights[i] = grasp.pose.translation[2]
idx = np.argmax(heights)
grasp, score = grasps[idx], scores[idx]
vis.draw_grasps(grasps, scores, 0.05)
# Visualize
vis.draw_tsdf(tsdf_grid, self.tsdf.voxel_size)
vis.draw_grasps(grasps, 0.05)
# Ensure that the camera is pointing forward.
grasp = grasps[0]
rot = grasp.pose.rotation
axis = rot.as_matrix()[:, 0]
if axis[0] < 0:
grasp.pose.rotation = rot * Rotation.from_euler("z", np.pi)
# Add offset between grasp frame and panda_hand frame
T_task_grasp = grasp.pose * Transform(
Rotation.identity(), np.r_[0.0, 0.0, -0.06]
)
self.best_grasp = self.H_B_T * T_task_grasp
# Compute target pose of the EE
H_T_G = grasp.pose
H_B_EE = self.H_B_T * H_T_G * self.H_EE_G.inv()
self.best_grasp = H_B_EE
self.done = True
return