Compare commits
4 Commits
1535a48a3f
...
fca984e76b
Author | SHA1 | Date | |
---|---|---|---|
fca984e76b | |||
dec67e8255 | |||
9c2625b11e | |||
2dfb6c57ce |
@ -6,16 +6,16 @@ runner:
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: train_ab_global_only_p++_wp
|
||||
root_dir: "experiments"
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
epoch: 922 # -1 stands for last epoch
|
||||
|
||||
test:
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
|
||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||
output_dir: "/media/hofee/data/results/nbv_rec_inference/global_only_ycb_241204"
|
||||
output_dir: "/media/hofee/data/data/p++_wp_temp_cluster"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
min_new_area: 1.0
|
||||
@ -34,8 +34,8 @@ dataset:
|
||||
# load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/media/hofee/data/results/ycb_preprocessed_dataset"
|
||||
model_dir: "/media/hofee/data/data/ycb_obj"
|
||||
root_dir: "/media/hofee/data/data/new_testset_output"
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset_preprocessed
|
||||
# split_file: "C:\\Document\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
@ -52,7 +52,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@ -60,6 +60,9 @@ pipeline:
|
||||
global_scanned_feat: True
|
||||
|
||||
module:
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
|
@ -15,13 +15,13 @@ runner:
|
||||
overlap_area_threshold: 30
|
||||
compute_with_normal: False
|
||||
scan_points_threshold: 10
|
||||
overwrite: False
|
||||
overwrite: False
|
||||
seq_num: 10
|
||||
dataset_list:
|
||||
- OmniObject3d
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
root_dir: /media/hofee/data/results/ycb_view_data
|
||||
root_dir: /media/hofee/data/data/test_bottle/view
|
||||
from: 0
|
||||
to: -1 # ..-1 means end
|
||||
|
@ -8,11 +8,11 @@ runner:
|
||||
root_dir: experiments
|
||||
generate:
|
||||
port: 5002
|
||||
from: 1
|
||||
from: 0
|
||||
to: 50 # -1 means all
|
||||
object_dir: /media/hofee/data/data/ycb_obj
|
||||
object_dir: /media/hofee/data/data/test_bottle/bottle_mesh
|
||||
table_model_path: /media/hofee/data/data/others/table.obj
|
||||
output_dir: /media/hofee/data/results/ycb_view_data
|
||||
output_dir: /media/hofee/data/data/test_bottle/view
|
||||
binocular_vision: true
|
||||
plane_size: 10
|
||||
max_views: 512
|
||||
@ -34,7 +34,7 @@ runner:
|
||||
max_y: 0.05
|
||||
min_z: 0.01
|
||||
max_z: 0.01
|
||||
random_rotation_ratio: 0.3
|
||||
random_rotation_ratio: 0.0
|
||||
random_objects:
|
||||
num: 4
|
||||
cluster: 0.9
|
||||
|
@ -75,6 +75,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 100)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
|
@ -64,11 +64,15 @@ class SeqReconstructionDataset(BaseDataset):
|
||||
scene_max_cr_idx = 0
|
||||
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
|
||||
|
||||
for i in range(frame_len):
|
||||
for i in range(10,frame_len):
|
||||
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||
print(pts.shape)
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
print(i)
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": i,
|
||||
@ -180,9 +184,9 @@ if __name__ == "__main__":
|
||||
np.random.seed(seed)
|
||||
|
||||
config = {
|
||||
"root_dir": "/media/hofee/data/results/ycb_view_data",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/view",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "/media/hofee/data/results/ycb_test.txt",
|
||||
"split_file": "/media/hofee/data/data/test_bottle/test_bottle.txt",
|
||||
"load_from_preprocess": True,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
@ -190,7 +194,7 @@ if __name__ == "__main__":
|
||||
"type": namespace.Mode.TEST,
|
||||
}
|
||||
|
||||
output_dir = "/media/hofee/data/results/ycb_preprocessed_dataset"
|
||||
output_dir = "/media/hofee/data/data/test_bottle/preprocessed_dataset"
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
ds = SeqReconstructionDataset(config)
|
||||
|
@ -21,7 +21,7 @@ class SeqReconstructionDatasetPreprocessed(BaseDataset):
|
||||
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.real_root_dir = r"/media/hofee/data/results/ycb_view_data"
|
||||
self.real_root_dir = r"/media/hofee/data/data/new_testset"
|
||||
self.item_list = os.listdir(self.root_dir)
|
||||
|
||||
def __getitem__(self, index):
|
||||
@ -66,7 +66,7 @@ if __name__ == "__main__":
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/preprocessed_dataset",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
|
@ -164,7 +164,7 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#root = "/media/hofee/repository/new_data_with_normal"
|
||||
root = r"/media/hofee/data/results/ycb_view_data"
|
||||
root = r"/media/hofee/data/data/test_bottle/view"
|
||||
scene_list = os.listdir(root)
|
||||
from_idx = 0 # 1000
|
||||
to_idx = len(scene_list) # 1500
|
||||
|
@ -83,6 +83,7 @@ class Inferencer(Runner):
|
||||
data = test_set.__getitem__(i)
|
||||
scene_name = data["scene_name"]
|
||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||
|
||||
if os.path.exists(inference_result_path):
|
||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||
continue
|
||||
@ -143,74 +144,87 @@ class Inferencer(Runner):
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
output = self.pipeline(input_data)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
import ipdb; ipdb.set_trace()
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
# # save pred_pose_9d ------
|
||||
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
|
||||
# scene_dir = os.path.join(root, scene_name)
|
||||
# if not os.path.exists(scene_dir):
|
||||
# os.makedirs(scene_dir)
|
||||
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
|
||||
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
|
||||
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
|
||||
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
|
||||
# np.savetxt(pts_path, np_combined_scanned_pts)
|
||||
# # ----- ----- -----
|
||||
pred_pose_9d_candidates = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses
|
||||
for pred_pose_9d in pred_pose_9d_candidates:
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
Log.yellow("no overlap!")
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
Log.yellow("no overlap!")
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
history_indices.append(new_scan_points_indices)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
if new_target_pts.shape[0] == 0:
|
||||
Log.red("no pts in new target")
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
|
||||
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
pred_cr_seq.append(pred_cr)
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||
|
||||
last_pts_num = pts_num
|
||||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||
success += 1
|
||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||
|
||||
last_pts_num = pts_num
|
||||
break
|
||||
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||
|
@ -88,6 +88,7 @@ class RenderUtil:
|
||||
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
#print(result)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
|
18
utils/vis.py
18
utils/vis.py
@ -7,6 +7,7 @@ import trimesh
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.pose import PoseUtil
|
||||
|
||||
class visualizeUtil:
|
||||
|
||||
@ -33,7 +34,22 @@ class visualizeUtil:
|
||||
all_cam_axis = np.array(all_cam_axis).reshape(-1, 3)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_pos.txt"), all_cam_pos)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_axis.txt"), all_cam_axis)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_cam_pose_and_cam_axis(cam_pose, is_6d_pose):
|
||||
if is_6d_pose:
|
||||
matrix_cam_pose = np.eye(4)
|
||||
matrix_cam_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(cam_pose[:6])
|
||||
matrix_cam_pose[:3, 3] = cam_pose[6:]
|
||||
else:
|
||||
matrix_cam_pose = cam_pose
|
||||
cam_pos = matrix_cam_pose[:3, 3]
|
||||
cam_axis = matrix_cam_pose[:3, 2]
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
return cam_pos, sample_points
|
||||
|
||||
@staticmethod
|
||||
def save_all_combined_pts(root, scene, output_dir):
|
||||
length = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
|
Loading…
x
Reference in New Issue
Block a user