finish PoseDiff and NBVDataset
This commit is contained in:
parent
be5a2d57fa
commit
f58360c0c0
@ -8,14 +8,16 @@ sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_recons
|
|||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
@stereotype.dataset("nbv_reconstruction_dataset", comment="not tested")
|
@stereotype.dataset("nbv_reconstruction_dataset")
|
||||||
class NBVReconstructionDataset(BaseDataset):
|
class NBVReconstructionDataset(BaseDataset):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(NBVReconstructionDataset, self).__init__(config)
|
super(NBVReconstructionDataset, self).__init__(config)
|
||||||
self.config = config
|
self.config = config
|
||||||
self.root_dir = config["root_dir"]
|
self.root_dir = config["root_dir"]
|
||||||
self.datalist = self.get_datalist()
|
self.datalist = self.get_datalist()
|
||||||
|
self.pts_num = 1024
|
||||||
|
|
||||||
def get_datalist(self):
|
def get_datalist(self):
|
||||||
datalist = []
|
datalist = []
|
||||||
@ -43,9 +45,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
nbv = data_item_info["next_best_view"]
|
nbv = data_item_info["next_best_view"]
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
scene_name = data_item_info["scene_name"]
|
scene_name = data_item_info["scene_name"]
|
||||||
scanned_views_pts, scanned_coverages_rate, scanned_cam_pose = [], [], []
|
scanned_views_pts, scanned_coverages_rate, scanned_n_to_1_pose = [], [], []
|
||||||
first_frame_idx = scanned_views[0][0]
|
first_frame_idx = scanned_views[0][0]
|
||||||
first_frame_pose = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
|
first_frame_to_world = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
@ -53,31 +55,37 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
depth = DataLoadUtil.load_depth(view_path)
|
depth = DataLoadUtil.load_depth(view_path)
|
||||||
cam_info = DataLoadUtil.load_cam_info(view_path)
|
cam_info = DataLoadUtil.load_cam_info(view_path)
|
||||||
mask = DataLoadUtil.load_seg(view_path)
|
mask = DataLoadUtil.load_seg(view_path)
|
||||||
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], cam_info["cam_to_world"], mask)
|
frame_curr_to_world = cam_info["cam_to_world"]
|
||||||
scanned_views_pts.append(target_point_cloud)
|
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), frame_curr_to_world)
|
||||||
|
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], n_to_1_pose, mask)["points_world"]
|
||||||
|
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(target_point_cloud, self.pts_num)
|
||||||
|
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||||
scanned_coverages_rate.append(coverage_rate)
|
scanned_coverages_rate.append(coverage_rate)
|
||||||
cam_pose = DataLoadUtil.load_cam_info(view_path)["cam_to_world"]
|
n_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_1_pose[:3,:3]))
|
||||||
|
n_to_1_trans = n_to_1_pose[:3,3]
|
||||||
cam_pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(cam_pose[:3,:3]))
|
n_to_1_9d = np.concatenate([n_to_1_6d, n_to_1_trans], axis=0)
|
||||||
translation = cam_pose[:3,3]
|
scanned_n_to_1_pose.append(n_to_1_9d)
|
||||||
cam_pose_9d = np.concatenate([cam_pose_6d, translation], axis=0)
|
|
||||||
scanned_cam_pose.append(cam_pose_9d)
|
|
||||||
|
|
||||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||||
nbv_pts = DataLoadUtil.load_depth(nbv_path)
|
nbv_depth = DataLoadUtil.load_depth(nbv_path)
|
||||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||||
nbv_cam_pose = cam_info["cam_to_world"]
|
nbv_mask = DataLoadUtil.load_seg(nbv_path)
|
||||||
nbv_cam_pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(nbv_cam_pose[:3,:3]))
|
best_frame_to_world = cam_info["cam_to_world"]
|
||||||
translation = nbv_cam_pose[:3,3]
|
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
|
||||||
nbv_cam_pose_9d = np.concatenate([nbv_cam_pose_6d, translation], axis=0)
|
best_target_point_cloud = DataLoadUtil.get_target_point_cloud(nbv_depth, cam_info["cam_intrinsic"], best_to_1_pose, nbv_mask)["points_world"]
|
||||||
|
downsampled_best_target_point_cloud = PtsUtil.random_downsample_point_cloud(best_target_point_cloud, self.pts_num)
|
||||||
|
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
|
||||||
|
best_to_1_trans = best_to_1_pose[:3,3]
|
||||||
|
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_views_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||||
"scanned_coverages_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||||
"scanned_cam_pose": np.asarray(scanned_cam_pose,dtype=np.float32),
|
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
||||||
"nbv_pts": np.asarray(nbv_pts,dtype=np.float32),
|
"best_pts": np.asarray(downsampled_best_target_point_cloud,dtype=np.float32),
|
||||||
"nbv_coverage_rate": nbv_coverage_rate,
|
"best_coverage_rate": nbv_coverage_rate,
|
||||||
"nbv_cam_pose": nbv_cam_pose_9d,
|
"best_to_1_pose_9d": best_to_1_9d,
|
||||||
"max_coverage_rate": max_coverage_rate,
|
"max_coverage_rate": max_coverage_rate,
|
||||||
"scene_name": scene_name
|
"scene_name": scene_name
|
||||||
}
|
}
|
||||||
@ -91,7 +99,7 @@ if __name__ == "__main__":
|
|||||||
import torch
|
import torch
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/media/hofee/data/data/nbv_rec/sample",
|
"root_dir": "/media/hofee/data/data/nbv_rec/sample",
|
||||||
"ratio": 0.1,
|
"ratio": 0.05,
|
||||||
"batch_size": 1,
|
"batch_size": 1,
|
||||||
"num_workers": 0,
|
"num_workers": 0,
|
||||||
}
|
}
|
||||||
@ -99,7 +107,18 @@ if __name__ == "__main__":
|
|||||||
print(len(ds))
|
print(len(ds))
|
||||||
dl = ds.get_loader(shuffle=True)
|
dl = ds.get_loader(shuffle=True)
|
||||||
for idx, data in enumerate(dl):
|
for idx, data in enumerate(dl):
|
||||||
|
cnt=0
|
||||||
|
print(data["scene_name"])
|
||||||
|
print(data["scanned_coverage_rate"])
|
||||||
|
print(data["best_coverage_rate"])
|
||||||
|
for pts in data["scanned_pts"][0]:
|
||||||
|
#np.savetxt(f"pts_{cnt}.txt", pts)
|
||||||
|
cnt+=1
|
||||||
|
best_pts = data["best_pts"][0]
|
||||||
|
#np.savetxt("best_pts.txt", best_pts)
|
||||||
for key, value in data.items():
|
for key, value in data.items():
|
||||||
if isinstance(value, torch.Tensor):
|
if isinstance(value, torch.Tensor):
|
||||||
print(key, ":" ,value.shape)
|
print(key, ":" ,value.shape)
|
||||||
|
|
||||||
|
|
||||||
print()
|
print()
|
@ -6,7 +6,7 @@ import PytorchBoot.namespace as namespace
|
|||||||
def get_view_data(cam_pose, scene_name):
|
def get_view_data(cam_pose, scene_name):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@stereotype.evaluation_method("pose_diff", comment="not tested")
|
@stereotype.evaluation_method("pose_diff")
|
||||||
class PoseDiff:
|
class PoseDiff:
|
||||||
def __init__(self, _):
|
def __init__(self, _):
|
||||||
pass
|
pass
|
||||||
@ -16,7 +16,7 @@ class PoseDiff:
|
|||||||
rot_angle_list = []
|
rot_angle_list = []
|
||||||
trans_dist_list = []
|
trans_dist_list = []
|
||||||
for output, data in zip(output_list, data_list):
|
for output, data in zip(output_list, data_list):
|
||||||
gt_pose_9d = data['nbv_cam_pose']
|
gt_pose_9d = data['best_to_1_pose_9d']
|
||||||
pred_pose_9d = output['pred_pose_9d']
|
pred_pose_9d = output['pred_pose_9d']
|
||||||
gt_rot_6d = gt_pose_9d[:, :6]
|
gt_rot_6d = gt_pose_9d[:, :6]
|
||||||
gt_trans = gt_pose_9d[:, 6:]
|
gt_trans = gt_pose_9d[:, 6:]
|
||||||
@ -49,9 +49,9 @@ class ConverageRateIncrease:
|
|||||||
cr_diff_list = []
|
cr_diff_list = []
|
||||||
for output, data in zip(output_list, data_list):
|
for output, data in zip(output_list, data_list):
|
||||||
scanned_cr = data['scanned_coverages_rate']
|
scanned_cr = data['scanned_coverages_rate']
|
||||||
gt_cr = data["nbv_coverage_rate"]
|
gt_cr = data["best_coverage_rate"]
|
||||||
scene_name_list = data['scene_name']
|
scene_name_list = data['scene_name']
|
||||||
scanned_view_pts_list = data['scanned_views_pts']
|
scanned_view_pts_list = data['scanned_pts']
|
||||||
pred_pose_9ds = output['pred_pose_9d']
|
pred_pose_9ds = output['pred_pose_9d']
|
||||||
pred_rot_mats = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9ds[:, :6])
|
pred_rot_mats = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9ds[:, :6])
|
||||||
pred_pose_mats = torch.cat([pred_rot_mats, pred_pose_9ds[:, 6:]], dim=-1)
|
pred_pose_mats = torch.cat([pred_rot_mats, pred_pose_9ds[:, 6:]], dim=-1)
|
||||||
|
@ -129,12 +129,12 @@ class DataLoadUtil:
|
|||||||
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
|
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
|
||||||
|
|
||||||
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
|
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"points_world": target_points_world,
|
"points_world": target_points_world,
|
||||||
"points_camera": target_points_camera
|
"points_camera": target_points_camera
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_point_cloud_world_from_path(path):
|
def get_point_cloud_world_from_path(path):
|
||||||
cam_info = DataLoadUtil.load_cam_info(path)
|
cam_info = DataLoadUtil.load_cam_info(path)
|
||||||
|
@ -15,3 +15,8 @@ class PtsUtil:
|
|||||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||||
points_h = np.dot(pose_mat, points_h.T).T
|
points_h = np.dot(pose_mat, points_h.T).T
|
||||||
return points_h[:, :3]
|
return points_h[:, :3]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def random_downsample_point_cloud(point_cloud, num_points):
|
||||||
|
idx = np.random.choice(len(point_cloud), num_points, replace=False)
|
||||||
|
return point_cloud[idx]
|
Loading…
x
Reference in New Issue
Block a user