124 lines
5.7 KiB
Python

import os
import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.stereotype as stereotype
import sys
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
@stereotype.dataset("nbv_reconstruction_dataset")
class NBVReconstructionDataset(BaseDataset):
def __init__(self, config):
super(NBVReconstructionDataset, self).__init__(config)
self.config = config
self.root_dir = config["root_dir"]
self.datalist = self.get_datalist()
self.pts_num = 1024
def get_datalist(self):
datalist = []
scene_name_list = os.listdir(self.root_dir)
for scene_name in scene_name_list:
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name)
label_data = DataLoadUtil.load_label(label_path)
for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0]
next_best_view = data_pair[1]
max_coverage_rate = label_data["max_coverage_rate"]
datalist.append(
{
"scanned_views": scanned_views,
"next_best_view": next_best_view,
"max_coverage_rate": max_coverage_rate,
"scene_name": scene_name,
}
)
return datalist
def __getitem__(self, index):
data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"]
nbv = data_item_info["next_best_view"]
max_coverage_rate = data_item_info["max_coverage_rate"]
scene_name = data_item_info["scene_name"]
scanned_views_pts, scanned_coverages_rate, scanned_n_to_1_pose = [], [], []
first_frame_idx = scanned_views[0][0]
first_frame_to_world = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
depth = DataLoadUtil.load_depth(view_path)
cam_info = DataLoadUtil.load_cam_info(view_path)
mask = DataLoadUtil.load_seg(view_path)
frame_curr_to_world = cam_info["cam_to_world"]
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), frame_curr_to_world)
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], n_to_1_pose, mask)["points_world"]
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(target_point_cloud, self.pts_num)
scanned_views_pts.append(downsampled_target_point_cloud)
scanned_coverages_rate.append(coverage_rate)
n_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_1_pose[:3,:3]))
n_to_1_trans = n_to_1_pose[:3,3]
n_to_1_9d = np.concatenate([n_to_1_6d, n_to_1_trans], axis=0)
scanned_n_to_1_pose.append(n_to_1_9d)
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
nbv_depth = DataLoadUtil.load_depth(nbv_path)
cam_info = DataLoadUtil.load_cam_info(nbv_path)
nbv_mask = DataLoadUtil.load_seg(nbv_path)
best_frame_to_world = cam_info["cam_to_world"]
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
best_target_point_cloud = DataLoadUtil.get_target_point_cloud(nbv_depth, cam_info["cam_intrinsic"], best_to_1_pose, nbv_mask)["points_world"]
downsampled_best_target_point_cloud = PtsUtil.random_downsample_point_cloud(best_target_point_cloud, self.pts_num)
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
best_to_1_trans = best_to_1_pose[:3,3]
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
data_item = {
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
"best_pts": np.asarray(downsampled_best_target_point_cloud,dtype=np.float32),
"best_coverage_rate": nbv_coverage_rate,
"best_to_1_pose_9d": best_to_1_9d,
"max_coverage_rate": max_coverage_rate,
"scene_name": scene_name
}
return data_item
def __len__(self):
return len(self.datalist)
if __name__ == "__main__":
import torch
config = {
"root_dir": "/media/hofee/data/data/nbv_rec/sample",
"ratio": 0.05,
"batch_size": 1,
"num_workers": 0,
}
ds = NBVReconstructionDataset(config)
print(len(ds))
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
cnt=0
print(data["scene_name"])
print(data["scanned_coverage_rate"])
print(data["best_coverage_rate"])
for pts in data["scanned_pts"][0]:
#np.savetxt(f"pts_{cnt}.txt", pts)
cnt+=1
best_pts = data["best_pts"][0]
#np.savetxt("best_pts.txt", best_pts)
for key, value in data.items():
if isinstance(value, torch.Tensor):
print(key, ":" ,value.shape)
print()