solve merge conflict
This commit is contained in:
commit
dc79f4b313
@ -7,9 +7,9 @@ runner:
|
||||
name: debug
|
||||
root_dir: experiments
|
||||
generate:
|
||||
port: 5005
|
||||
from: 2300
|
||||
to: 2800 # -1 means all
|
||||
port: 5004
|
||||
from: 4000
|
||||
to: -1 # -1 means all
|
||||
object_dir: /media/hofee/data/data/scaled_object_meshes
|
||||
table_model_path: /media/hofee/data/data/others/table.obj
|
||||
output_dir: /media/hofee/repository/new_data_with_normal
|
||||
|
@ -1,12 +1,9 @@
|
||||
import os
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
import time
|
||||
import sys
|
||||
np.random.seed(0)
|
||||
# append parent directory to sys.path
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
print(sys.path)
|
||||
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from utils.data_load import DataLoadUtil
|
||||
@ -18,28 +15,12 @@ def save_np_pts(path, pts: np.ndarray, file_type="txt"):
|
||||
else:
|
||||
np.save(path, pts)
|
||||
|
||||
def save_full_points(root, scene, frame_idx, full_points: np.ndarray, file_type="txt"):
|
||||
pts_path = os.path.join(root,scene, "scene_pts", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "scene_pts")):
|
||||
os.makedirs(os.path.join(root,scene, "scene_pts"))
|
||||
save_np_pts(pts_path, full_points, file_type)
|
||||
|
||||
def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_type="txt"):
|
||||
pts_path = os.path.join(root,scene, "target_pts", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "target_pts")):
|
||||
os.makedirs(os.path.join(root,scene, "target_pts"))
|
||||
pts_path = os.path.join(root,scene, "pts", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "pts")):
|
||||
os.makedirs(os.path.join(root,scene, "pts"))
|
||||
save_np_pts(pts_path, target_points, file_type)
|
||||
|
||||
def save_mask_idx(root, scene, frame_idx, mask_train_input: np.ndarray, mask_overlap, file_type="txt"):
|
||||
mask_train_input_path = os.path.join(root,scene, "mask_idx", f"mask_train_input_{frame_idx}.{file_type}")
|
||||
mask_overlap_path = os.path.join(root,scene, "mask_idx", f"mask_overlap_{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "mask_idx")):
|
||||
os.makedirs(os.path.join(root,scene, "mask_idx"))
|
||||
save_np_pts(mask_train_input_path, mask_train_input, file_type)
|
||||
save_np_pts(mask_overlap_path, mask_overlap, file_type)
|
||||
# filtered_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}_filtered.{file_type}")
|
||||
# save_np_pts(filtered_path, filtered_idx, file_type)
|
||||
|
||||
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
||||
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "scan_points_indices")):
|
||||
@ -51,17 +32,31 @@ def save_scan_points(root, scene, scan_points: np.ndarray):
|
||||
save_np_pts(scan_points_path, scan_points)
|
||||
|
||||
|
||||
def get_world_points(depth, cam_intrinsic, cam_extrinsic):
|
||||
def old_get_world_points(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world
|
||||
|
||||
def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic):
|
||||
z = depth[mask]
|
||||
i, j = np.nonzero(mask)
|
||||
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world
|
||||
|
||||
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||
@ -84,14 +79,16 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
''' configuration '''
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
display_table_mask_label=(0, 0, 255, 255)
|
||||
random_downsample_N = 65536
|
||||
train_input_pts_num = 8192
|
||||
random_downsample_N = 32768
|
||||
voxel_size=0.002
|
||||
filter_degree = 75
|
||||
min_z = 0.2
|
||||
max_z = 0.45
|
||||
|
||||
''' scan points '''
|
||||
display_table_info = DataLoadUtil.get_display_table_info(root, scene)
|
||||
radius = display_table_info["radius"]
|
||||
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||||
|
||||
''' read frame data(depth|mask|normal) '''
|
||||
@ -110,53 +107,49 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
#normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
||||
|
||||
''' scene points '''
|
||||
scene_points_L = get_world_points(depth_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scene_points_R = get_world_points(depth_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
sampled_scene_points_L, random_sample_idx_L = PtsUtil.random_downsample_point_cloud(
|
||||
scene_points_L, random_downsample_N, require_idx=True
|
||||
)
|
||||
sampled_scene_points_R = PtsUtil.random_downsample_point_cloud(
|
||||
scene_points_R, random_downsample_N
|
||||
)
|
||||
scene_overlap_points, overlap_idx_L = PtsUtil.get_overlapping_points(
|
||||
sampled_scene_points_L, sampled_scene_points_R, voxel_size, require_idx=True
|
||||
)
|
||||
|
||||
if scene_overlap_points.shape[0] < 1024:
|
||||
scene_overlap_points = sampled_scene_points_L
|
||||
overlap_idx_L = np.arange(sampled_scene_points_L.shape[0])
|
||||
train_input_points, train_input_idx = PtsUtil.random_downsample_point_cloud(
|
||||
scene_overlap_points, train_input_pts_num, require_idx=True
|
||||
)
|
||||
|
||||
''' target points '''
|
||||
mask_img_L = mask_L
|
||||
mask_img_R = mask_R
|
||||
mask_L = mask_L.reshape(-1, 4)
|
||||
mask_L = (mask_L == target_mask_label).all(axis=-1)
|
||||
mask_overlap = mask_L[random_sample_idx_L][overlap_idx_L]
|
||||
target_points = scene_overlap_points[mask_overlap]
|
||||
filtered_target_points, filtered_idx = PtsUtil.filter_points(
|
||||
target_points, target_normals, cam_info["cam_to_world"], filter_degree, require_idx=True
|
||||
|
||||
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
||||
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
||||
|
||||
|
||||
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
|
||||
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
|
||||
target_points_L, random_downsample_N
|
||||
)
|
||||
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
|
||||
target_points_R, random_downsample_N
|
||||
)
|
||||
|
||||
''' train_input_mask '''
|
||||
mask_train_input = mask_overlap[train_input_idx]
|
||||
|
||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||
if has_points:
|
||||
target_points = PtsUtil.get_overlapping_points(
|
||||
sampled_target_points_L, sampled_target_points_R, voxel_size
|
||||
)
|
||||
|
||||
|
||||
has_points = target_points.shape[0] > 0
|
||||
if has_points:
|
||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||
target_points = PtsUtil.filter_points(
|
||||
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
|
||||
)
|
||||
|
||||
|
||||
''' scan points indices '''
|
||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
print(scan_points_indices.shape, scan_points_indices_L.shape, scan_points_indices_R.shape)
|
||||
# np.savetxt(f"{root}/{scene}/scan_points_{frame_id}_L.txt", scan_points[scan_points_indices_L])
|
||||
np.savetxt(f"{root}/{scene}/scan_points_{frame_id}.txt", scan_points[scan_points_indices])
|
||||
save_full_points(root, scene, frame_id, train_input_points, file_type=file_type)
|
||||
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
|
||||
save_target_points(root, scene, frame_id, target_points)
|
||||
save_mask_idx(root, scene, frame_id, mask_train_input, mask_overlap,file_type=file_type)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices)
|
||||
|
||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||
@ -164,8 +157,8 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#root = "/media/hofee/repository/new_data_with_normal"
|
||||
root = "/media/hofee/repository/test_sample"
|
||||
list_path = "/media/hofee/repository/test_sample/test_sample_list.txt"
|
||||
root = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test\test_sample"
|
||||
list_path = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test\test_sample/test_sample_list.txt"
|
||||
scene_list = []
|
||||
|
||||
with open(list_path, "r") as f:
|
||||
@ -177,7 +170,11 @@ if __name__ == "__main__":
|
||||
|
||||
|
||||
cnt = 0
|
||||
import time
|
||||
total = to_idx - from_idx
|
||||
for scene in scene_list[from_idx:to_idx]:
|
||||
save_scene_data(root, scene, cnt, total, "txt")
|
||||
cnt+=1
|
||||
start = time.time()
|
||||
save_scene_data(root, scene, cnt, total)
|
||||
cnt+=1
|
||||
end = time.time()
|
||||
print(f"Time cost: {end-start}")
|
||||
|
@ -204,7 +204,9 @@ class DataLoadUtil:
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_COLOR)
|
||||
return normal_image_L[:3,:3], normal_image_R[:3,:3]
|
||||
normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image_L, normalized_normal_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
normal_path = os.path.join(
|
||||
@ -215,7 +217,8 @@ class DataLoadUtil:
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + ".png"
|
||||
)
|
||||
normal_image = cv2.imread(normal_path, cv2.IMREAD_COLOR)
|
||||
return normal_image
|
||||
normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image
|
||||
|
||||
@staticmethod
|
||||
def load_label(path):
|
||||
|
32
utils/pts.py
32
utils/pts.py
@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from scipy.spatial import cKDTree
|
||||
|
||||
class PtsUtil:
|
||||
|
||||
@ -56,17 +57,36 @@ class PtsUtil:
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, normals, cam_pose, theta=75, require_idx=False):
|
||||
def new_filter_points(points, normals, cam_pose, theta=75, require_idx=False):
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
idx = cos_theta > np.cos(theta_rad)
|
||||
print(cos_theta, theta_rad)
|
||||
filtered_points= points[idx]
|
||||
# ------ Debug Start ------
|
||||
import ipdb;ipdb.set_trace()
|
||||
# ------ Debug End ------
|
||||
if require_idx:
|
||||
return filtered_points, idx
|
||||
return filtered_points
|
||||
return filtered_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)):
|
||||
|
||||
""" filter with z range """
|
||||
points_cam = PtsUtil.transform_point_cloud(points, np.linalg.inv(cam_pose))
|
||||
idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1])
|
||||
z_filtered_points = points[idx]
|
||||
|
||||
""" filter with normal """
|
||||
sampled_points = PtsUtil.voxel_downsample_point_cloud(z_filtered_points, voxel_size)
|
||||
kdtree = cKDTree(points_normals[:,:3])
|
||||
_, indices = kdtree.query(sampled_points)
|
||||
nearest_points = points_normals[indices]
|
||||
|
||||
normals = nearest_points[:, 3:]
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
idx = cos_theta > np.cos(theta_rad)
|
||||
filtered_sampled_points= sampled_points[idx]
|
||||
return filtered_sampled_points[:, :3]
|
@ -132,7 +132,7 @@ class ReconstructionUtil:
|
||||
|
||||
|
||||
@staticmethod
|
||||
def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 100, max_attempts = 1000):
|
||||
def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 500, max_attempts = 1000):
|
||||
points = []
|
||||
attempts = 0
|
||||
while len(points) < max_points_num and attempts < max_attempts:
|
||||
|
Loading…
x
Reference in New Issue
Block a user