diff --git a/configs/local/view_generate_config.yaml b/configs/local/view_generate_config.yaml index 1266f37..7364d5d 100644 --- a/configs/local/view_generate_config.yaml +++ b/configs/local/view_generate_config.yaml @@ -7,9 +7,9 @@ runner: name: debug root_dir: experiments generate: - port: 5005 - from: 2300 - to: 2800 # -1 means all + port: 5004 + from: 4000 + to: -1 # -1 means all object_dir: /media/hofee/data/data/scaled_object_meshes table_model_path: /media/hofee/data/data/others/table.obj output_dir: /media/hofee/repository/new_data_with_normal diff --git a/preprocess/preprocessor.py b/preprocess/preprocessor.py index c8a065a..054ef0d 100644 --- a/preprocess/preprocessor.py +++ b/preprocess/preprocessor.py @@ -1,12 +1,9 @@ import os -import json import numpy as np - +import time import sys np.random.seed(0) -# append parent directory to sys.path sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -print(sys.path) from utils.reconstruction import ReconstructionUtil from utils.data_load import DataLoadUtil @@ -18,28 +15,12 @@ def save_np_pts(path, pts: np.ndarray, file_type="txt"): else: np.save(path, pts) -def save_full_points(root, scene, frame_idx, full_points: np.ndarray, file_type="txt"): - pts_path = os.path.join(root,scene, "scene_pts", f"{frame_idx}.{file_type}") - if not os.path.exists(os.path.join(root,scene, "scene_pts")): - os.makedirs(os.path.join(root,scene, "scene_pts")) - save_np_pts(pts_path, full_points, file_type) - def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_type="txt"): - pts_path = os.path.join(root,scene, "target_pts", f"{frame_idx}.{file_type}") - if not os.path.exists(os.path.join(root,scene, "target_pts")): - os.makedirs(os.path.join(root,scene, "target_pts")) + pts_path = os.path.join(root,scene, "pts", f"{frame_idx}.{file_type}") + if not os.path.exists(os.path.join(root,scene, "pts")): + os.makedirs(os.path.join(root,scene, "pts")) save_np_pts(pts_path, target_points, file_type) -def save_mask_idx(root, scene, frame_idx, mask_train_input: np.ndarray, mask_overlap, file_type="txt"): - mask_train_input_path = os.path.join(root,scene, "mask_idx", f"mask_train_input_{frame_idx}.{file_type}") - mask_overlap_path = os.path.join(root,scene, "mask_idx", f"mask_overlap_{frame_idx}.{file_type}") - if not os.path.exists(os.path.join(root,scene, "mask_idx")): - os.makedirs(os.path.join(root,scene, "mask_idx")) - save_np_pts(mask_train_input_path, mask_train_input, file_type) - save_np_pts(mask_overlap_path, mask_overlap, file_type) - # filtered_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}_filtered.{file_type}") - # save_np_pts(filtered_path, filtered_idx, file_type) - def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"): indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}") if not os.path.exists(os.path.join(root,scene, "scan_points_indices")): @@ -51,17 +32,31 @@ def save_scan_points(root, scene, scan_points: np.ndarray): save_np_pts(scan_points_path, scan_points) -def get_world_points(depth, cam_intrinsic, cam_extrinsic): +def old_get_world_points(depth, cam_intrinsic, cam_extrinsic): h, w = depth.shape i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy") - + # ----- Debug Trace ----- # + import ipdb; ipdb.set_trace() + # ------------------------ # z = depth x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] + points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) + points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1) + points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3] + + return points_camera_world + +def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic): + z = depth[mask] + i, j = np.nonzero(mask) + x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] + y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1) points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3] + return points_camera_world def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic): @@ -84,14 +79,16 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"): ''' configuration ''' target_mask_label = (0, 255, 0, 255) display_table_mask_label=(0, 0, 255, 255) - random_downsample_N = 65536 - train_input_pts_num = 8192 + random_downsample_N = 32768 voxel_size=0.002 filter_degree = 75 + min_z = 0.2 + max_z = 0.45 ''' scan points ''' display_table_info = DataLoadUtil.get_display_table_info(root, scene) radius = display_table_info["radius"] + scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius)) ''' read frame data(depth|mask|normal) ''' @@ -110,53 +107,49 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"): binocular=True ) mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True) - #normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True) - - ''' scene points ''' - scene_points_L = get_world_points(depth_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"]) - scene_points_R = get_world_points(depth_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"]) - sampled_scene_points_L, random_sample_idx_L = PtsUtil.random_downsample_point_cloud( - scene_points_L, random_downsample_N, require_idx=True - ) - sampled_scene_points_R = PtsUtil.random_downsample_point_cloud( - scene_points_R, random_downsample_N - ) - scene_overlap_points, overlap_idx_L = PtsUtil.get_overlapping_points( - sampled_scene_points_L, sampled_scene_points_R, voxel_size, require_idx=True - ) - - if scene_overlap_points.shape[0] < 1024: - scene_overlap_points = sampled_scene_points_L - overlap_idx_L = np.arange(sampled_scene_points_L.shape[0]) - train_input_points, train_input_idx = PtsUtil.random_downsample_point_cloud( - scene_overlap_points, train_input_pts_num, require_idx=True - ) ''' target points ''' mask_img_L = mask_L mask_img_R = mask_R - mask_L = mask_L.reshape(-1, 4) - mask_L = (mask_L == target_mask_label).all(axis=-1) - mask_overlap = mask_L[random_sample_idx_L][overlap_idx_L] - target_points = scene_overlap_points[mask_overlap] - filtered_target_points, filtered_idx = PtsUtil.filter_points( - target_points, target_normals, cam_info["cam_to_world"], filter_degree, require_idx=True + + target_mask_img_L = (mask_L == target_mask_label).all(axis=-1) + target_mask_img_R = (mask_R == target_mask_label).all(axis=-1) + + + target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"]) + target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"]) + + sampled_target_points_L = PtsUtil.random_downsample_point_cloud( + target_points_L, random_downsample_N + ) + sampled_target_points_R = PtsUtil.random_downsample_point_cloud( + target_points_R, random_downsample_N ) - ''' train_input_mask ''' - mask_train_input = mask_overlap[train_input_idx] - + has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0 + if has_points: + target_points = PtsUtil.get_overlapping_points( + sampled_target_points_L, sampled_target_points_R, voxel_size + ) + + has_points = target_points.shape[0] > 0 + if has_points: + points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True) + target_points = PtsUtil.filter_points( + target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z) + ) + + ''' scan points indices ''' scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"]) scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"]) scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R) - print(scan_points_indices.shape, scan_points_indices_L.shape, scan_points_indices_R.shape) - # np.savetxt(f"{root}/{scene}/scan_points_{frame_id}_L.txt", scan_points[scan_points_indices_L]) - np.savetxt(f"{root}/{scene}/scan_points_{frame_id}.txt", scan_points[scan_points_indices]) - save_full_points(root, scene, frame_id, train_input_points, file_type=file_type) + + if not has_points: + target_points = np.zeros((0, 3)) + save_target_points(root, scene, frame_id, target_points) - save_mask_idx(root, scene, frame_id, mask_train_input, mask_overlap,file_type=file_type) save_scan_points_indices(root, scene, frame_id, scan_points_indices) save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess @@ -164,8 +157,8 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"): if __name__ == "__main__": #root = "/media/hofee/repository/new_data_with_normal" - root = "/media/hofee/repository/test_sample" - list_path = "/media/hofee/repository/test_sample/test_sample_list.txt" + root = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test\test_sample" + list_path = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test\test_sample/test_sample_list.txt" scene_list = [] with open(list_path, "r") as f: @@ -177,7 +170,11 @@ if __name__ == "__main__": cnt = 0 + import time total = to_idx - from_idx for scene in scene_list[from_idx:to_idx]: - save_scene_data(root, scene, cnt, total, "txt") - cnt+=1 \ No newline at end of file + start = time.time() + save_scene_data(root, scene, cnt, total) + cnt+=1 + end = time.time() + print(f"Time cost: {end-start}") diff --git a/utils/data_load.py b/utils/data_load.py index 33f65c0..ed5a144 100644 --- a/utils/data_load.py +++ b/utils/data_load.py @@ -204,7 +204,9 @@ class DataLoadUtil: os.path.dirname(path), "normal", os.path.basename(path) + "_R.png" ) normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_COLOR) - return normal_image_L[:3,:3], normal_image_R[:3,:3] + normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0 + normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0 + return normalized_normal_image_L, normalized_normal_image_R else: if binocular and left_only: normal_path = os.path.join( @@ -215,7 +217,8 @@ class DataLoadUtil: os.path.dirname(path), "normal", os.path.basename(path) + ".png" ) normal_image = cv2.imread(normal_path, cv2.IMREAD_COLOR) - return normal_image + normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0 + return normalized_normal_image @staticmethod def load_label(path): diff --git a/utils/pts.py b/utils/pts.py index 66258ac..0551149 100644 --- a/utils/pts.py +++ b/utils/pts.py @@ -1,6 +1,7 @@ import numpy as np import open3d as o3d import torch +from scipy.spatial import cKDTree class PtsUtil: @@ -56,17 +57,36 @@ class PtsUtil: return overlapping_points @staticmethod - def filter_points(points, normals, cam_pose, theta=75, require_idx=False): + def new_filter_points(points, normals, cam_pose, theta=75, require_idx=False): camera_axis = -cam_pose[:3, 2] normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) cos_theta = np.dot(normals_normalized, camera_axis) theta_rad = np.deg2rad(theta) idx = cos_theta > np.cos(theta_rad) - print(cos_theta, theta_rad) filtered_points= points[idx] - # ------ Debug Start ------ - import ipdb;ipdb.set_trace() - # ------ Debug End ------ if require_idx: return filtered_points, idx - return filtered_points \ No newline at end of file + return filtered_points + + @staticmethod + def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)): + + """ filter with z range """ + points_cam = PtsUtil.transform_point_cloud(points, np.linalg.inv(cam_pose)) + idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1]) + z_filtered_points = points[idx] + + """ filter with normal """ + sampled_points = PtsUtil.voxel_downsample_point_cloud(z_filtered_points, voxel_size) + kdtree = cKDTree(points_normals[:,:3]) + _, indices = kdtree.query(sampled_points) + nearest_points = points_normals[indices] + + normals = nearest_points[:, 3:] + camera_axis = -cam_pose[:3, 2] + normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) + cos_theta = np.dot(normals_normalized, camera_axis) + theta_rad = np.deg2rad(theta) + idx = cos_theta > np.cos(theta_rad) + filtered_sampled_points= sampled_points[idx] + return filtered_sampled_points[:, :3] \ No newline at end of file diff --git a/utils/reconstruction.py b/utils/reconstruction.py index 74f039f..530358d 100644 --- a/utils/reconstruction.py +++ b/utils/reconstruction.py @@ -132,7 +132,7 @@ class ReconstructionUtil: @staticmethod - def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 100, max_attempts = 1000): + def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 500, max_attempts = 1000): points = [] attempts = 0 while len(points) < max_points_num and attempts < max_attempts: