finish nbv_reconstruction_dataset
This commit is contained in:
parent
7cd1954a25
commit
954fed1122
@ -4,17 +4,17 @@ runner:
|
|||||||
seed: 0
|
seed: 0
|
||||||
device: cpu
|
device: cpu
|
||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
generate:
|
|
||||||
voxel_threshold: 0.005
|
|
||||||
overlap_threshold: 0.3
|
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: debug
|
name: debug
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
|
|
||||||
dataset_list:
|
generate:
|
||||||
- OmniObject3d
|
voxel_threshold: 0.005
|
||||||
|
overlap_threshold: 0.3
|
||||||
|
dataset_list:
|
||||||
|
- OmniObject3d
|
||||||
|
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d:
|
OmniObject3d:
|
||||||
|
21
configs/train_config.yaml
Normal file
21
configs/train_config.yaml
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
|
||||||
|
runner:
|
||||||
|
general:
|
||||||
|
seed: 0
|
||||||
|
device: cpu
|
||||||
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
experiment:
|
||||||
|
name: debug
|
||||||
|
root_dir: "experiments"
|
||||||
|
|
||||||
|
train:
|
||||||
|
dataset_list:
|
||||||
|
- OmniObject3d
|
||||||
|
|
||||||
|
datasets:
|
||||||
|
OmniObject3d:
|
||||||
|
root_dir: "C:\\Document\\Local Project\\nbv_rec\\sample_dataset"
|
||||||
|
label_dir: "C:\\Document\\Local Project\\nbv_rec\\sample_output"
|
||||||
|
|
||||||
|
|
@ -1,17 +1,89 @@
|
|||||||
|
import numpy as np
|
||||||
from PytorchBoot.dataset import BaseDataset
|
from PytorchBoot.dataset import BaseDataset
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from utils.data_load import DataLoadUtil
|
||||||
|
|
||||||
@stereotype.dataset("nbv_reconstruction_dataset", comment="unfinished")
|
|
||||||
|
@stereotype.dataset("nbv_reconstruction_dataset")
|
||||||
class NBVReconstructionDataset(BaseDataset):
|
class NBVReconstructionDataset(BaseDataset):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(NBVReconstructionDataset, self).__init__(config)
|
super(NBVReconstructionDataset, self).__init__(config)
|
||||||
self.config = config
|
self.config = config
|
||||||
|
self.label_dir = config["label_dir"]
|
||||||
|
self.root_dir = config["root_dir"]
|
||||||
|
self.datalist = self.get_datalist()
|
||||||
|
|
||||||
def get_datalist(self):
|
def get_datalist(self):
|
||||||
pass
|
datalist = []
|
||||||
|
scene_idx_list = DataLoadUtil.get_scene_idx_list(self.root_dir)
|
||||||
def load_view(path):
|
for scene_idx in scene_idx_list:
|
||||||
pass
|
label_path = DataLoadUtil.get_label_path(self.label_dir, scene_idx)
|
||||||
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
def load_data_item(self, idx):
|
for data_pair in label_data["data_pairs"]:
|
||||||
pass
|
scanned_views = data_pair[0]
|
||||||
|
next_best_view = data_pair[1]
|
||||||
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
|
datalist.append(
|
||||||
|
{
|
||||||
|
"scanned_views": scanned_views,
|
||||||
|
"next_best_view": next_best_view,
|
||||||
|
"max_coverage_rate": max_coverage_rate,
|
||||||
|
"scene_idx": scene_idx,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return datalist
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
data_item_info = self.datalist[index]
|
||||||
|
scanned_views = data_item_info["scanned_views"]
|
||||||
|
nbv = data_item_info["next_best_view"]
|
||||||
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
|
scene_idx = data_item_info["scene_idx"]
|
||||||
|
scanned_views_pts, scanned_coverages_rate, scanned_cam_pose = [], [], []
|
||||||
|
for view in scanned_views:
|
||||||
|
frame_idx = view[0]
|
||||||
|
coverage_rate = view[1]
|
||||||
|
view_path = DataLoadUtil.get_path(self.root_dir, scene_idx, frame_idx)
|
||||||
|
pts = DataLoadUtil.load_depth(view_path)
|
||||||
|
scanned_views_pts.append(pts)
|
||||||
|
scanned_coverages_rate.append(coverage_rate)
|
||||||
|
cam_pose = DataLoadUtil.load_cam_info(view_path)["cam_to_world"]
|
||||||
|
scanned_cam_pose.append(cam_pose)
|
||||||
|
|
||||||
|
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||||
|
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_idx, nbv_idx)
|
||||||
|
nbv_pts = DataLoadUtil.load_depth(nbv_path)
|
||||||
|
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||||
|
nbv_cam_pose = cam_info["cam_to_world"]
|
||||||
|
|
||||||
|
data_item = {
|
||||||
|
"scanned_views_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||||
|
"scanned_coverages_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||||
|
"scanned_cam_pose": np.asarray(scanned_cam_pose,dtype=np.float32),
|
||||||
|
"nbv_pts": np.asarray(nbv_pts,dtype=np.float32),
|
||||||
|
"nbv_coverage_rate": nbv_coverage_rate,
|
||||||
|
"nbv_cam_pose": nbv_cam_pose,
|
||||||
|
"max_coverage_rate": max_coverage_rate,
|
||||||
|
}
|
||||||
|
|
||||||
|
return data_item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.datalist)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import torch
|
||||||
|
config = {
|
||||||
|
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_dataset",
|
||||||
|
"label_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_output",
|
||||||
|
"ratio": 0.1,
|
||||||
|
"batch_size": 1,
|
||||||
|
"num_workers": 0,
|
||||||
|
}
|
||||||
|
ds = NBVReconstructionDataset(config)
|
||||||
|
dl = ds.get_loader(shuffle=True)
|
||||||
|
for idx, data in enumerate(dl):
|
||||||
|
for key, value in data.items():
|
||||||
|
if isinstance(value, torch.Tensor):
|
||||||
|
print(key, ":" ,value.shape)
|
||||||
|
print()
|
@ -7,14 +7,14 @@ import PytorchBoot.stereotype as stereotype
|
|||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.reconstruction import ReconstructionUtil
|
from utils.reconstruction import ReconstructionUtil
|
||||||
|
|
||||||
@stereotype.runner("strategy_generator", comment="unfinished")
|
@stereotype.runner("strategy_generator")
|
||||||
class StrategyGenerator(Runner):
|
class StrategyGenerator(Runner):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
self.load_experiment("generate")
|
self.load_experiment("generate")
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
dataset_name_list = ConfigManager.get("runner", "dataset_list")
|
dataset_name_list = ConfigManager.get("runner", "generate" "dataset_list")
|
||||||
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
|
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
|
||||||
for dataset_name in dataset_name_list:
|
for dataset_name in dataset_name_list:
|
||||||
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
|
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
|
||||||
|
@ -66,6 +66,12 @@ class DataLoadUtil:
|
|||||||
depth_map = DataLoadUtil.read_exr_depth(depth_path)
|
depth_map = DataLoadUtil.read_exr_depth(depth_path)
|
||||||
return depth_map
|
return depth_map
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_label(path):
|
||||||
|
with open(path, 'r') as f:
|
||||||
|
label_data = json.load(f)
|
||||||
|
return label_data
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_rgb(path):
|
def load_rgb(path):
|
||||||
rgb_path = path + ".camera.png"
|
rgb_path = path + ".camera.png"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user