nbv_reconstruction/runners/strategy_generator.py
2024-08-22 22:28:20 +08:00

67 lines
3.1 KiB
Python

import os
import json
from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
import PytorchBoot.stereotype as stereotype
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
@stereotype.runner("strategy_generator")
class StrategyGenerator(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("generate")
def run(self):
dataset_name_list = ConfigManager.get("runner", "generate" "dataset_list")
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
for dataset_name in dataset_name_list:
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
output_dir = ConfigManager.get("datasets", dataset_name, "output_dir")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
scene_idx_list = DataLoadUtil.get_scene_idx_list(root_dir)
for scene_idx in scene_idx_list:
self.generate_sequence(root_dir, output_dir, scene_idx,voxel_threshold, overlap_threshold)
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
output_dir = os.path.join(str(self.experiment_path), "output")
os.makedirs(output_dir)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
def generate_sequence(self,root, output_dir, seq, voxel_threshold, overlap_threshold):
frame_idx_list = DataLoadUtil.get_frame_idx_list(root, seq)
model_pts = DataLoadUtil.load_model_points(root, seq)
pts_list = []
for frame_idx in frame_idx_list:
path = DataLoadUtil.get_path(root, seq, frame_idx)
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
sampled_point_cloud = ReconstructionUtil.downsample_point_cloud(point_cloud, voxel_threshold)
pts_list.append(sampled_point_cloud)
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold)
data_pairs = self.generate_data_pairs(limited_useful_view)
seq_save_data = {
"data_pairs": data_pairs,
"best_sequence": limited_useful_view,
"max_coverage_rate": limited_useful_view[-1][1]
}
output_label_path = DataLoadUtil.get_label_path(output_dir, seq)
with open(output_label_path, 'w') as f:
json.dump(seq_save_data, f)
def generate_data_pairs(self, useful_view):
data_pairs = []
for next_view_idx in range(len(useful_view)):
scanned_views = useful_view[:next_view_idx]
next_view = useful_view[next_view_idx]
data_pairs.append((scanned_views, next_view))
return data_pairs