nbv_grasping/runners/inference_engine.py
2024-10-09 16:13:22 +00:00

133 lines
5.5 KiB
Python
Executable File

import os
import sys
from datetime import datetime
import torch
import pickle
from tqdm import tqdm
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from configs.config import ConfigManager
from datasets.dataset_factory import DatasetFactory
from modules.pipeline import Pipeline
from runners.runner import Runner
class InferenceEngine(Runner):
RESULTS_DIR_NAME: str = 'results'
LOG_DIR_NAME: str = 'log'
def __init__(self, config_path):
super().__init__(config_path)
''' Pipeline '''
self.pipeline_config = ConfigManager.get("settings", "pipeline")
self.pipeline = Pipeline(self.pipeline_config).to(self.device)
''' Experiment '''
self.model_path = ConfigManager.get("settings", "experiment", "model_path")
self.load_checkpoint(self.model_path)
self.load_experiment("inference")
''' Inference Results '''
self.inference_results_config = ConfigManager.get("settings", "results")
self.save_data_keys = self.inference_results_config["save_data_keys"]
self.save_output_keys = self.inference_results_config["save_output_keys"]
''' Test '''
self.test_config = ConfigManager.get("settings", "test")
self.test_dataset_config_list = self.test_config["dataset_list"]
self.test_set_list = []
seen_name = set()
for test_dataset_config in self.test_dataset_config_list:
if test_dataset_config["name"] not in seen_name:
seen_name.add(test_dataset_config["name"])
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_config["name"]))
test_set = DatasetFactory.create(test_dataset_config)
self.test_set_list.append(test_set)
del seen_name
self.print_info()
def run(self):
print("Inference start...")
self.test()
print("Inference finished!")
def test(self):
self.pipeline.eval()
with torch.no_grad():
for dataset_idx, test_set in enumerate(self.test_set_list):
test_set_name = self.test_dataset_config_list[dataset_idx]["name"]
ratio = self.test_dataset_config_list[dataset_idx]["ratio"]
test_loader = test_set.get_loader()
loop = tqdm(enumerate(test_loader), total=int(len(test_loader)))
for i, data in loop:
test_set.process_batch(data, self.device)
output = self.pipeline(data, Pipeline.TEST_MODE)
self.save_output(output, data, test_set_name, i)
loop.set_description(
f'Inference (Test: {test_set_name}, ratio={ratio})')
def save_output(self, output, data, test_set_name, idx):
results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME)
if not os.path.exists(os.path.join(results_dir,test_set_name)):
os.makedirs(os.path.join(results_dir,test_set_name))
save_path = os.path.join(results_dir, test_set_name, f"{idx}.pkl")
data = {key: value for key, value in data.items() if key in self.save_data_keys}
output = {key: value for key, value in output.items() if key in self.save_output_keys}
output_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in output.items()}
data_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in data.items()}
with open(save_path, "wb") as f:
pickle.dump({"output":output_converted,"data":data_converted}, f)
def load_checkpoint(self, model_path):
self.pipeline.load(model_path)
print(f"Checkpoint loaded from {model_path}")
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME)
os.makedirs(results_dir)
def print_info(self):
def print_dataset(config, dataset):
print("\t name: {}".format(config["name"]))
print("\t source: {}".format(config["source"]))
print("\t data_type: {}".format(config["data_type"]))
print("\t total_length: {}".format(len(dataset)))
print("\t ratio: {}".format(config["ratio"]))
print()
super().print_info()
table_size = 70
print(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
print(self.pipeline)
print(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_dataset_config in enumerate(self.test_dataset_config_list):
print(f"test dataset {i}: ")
print_dataset(test_dataset_config, self.test_set_list[i])
print(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/local_inference_config.yaml")
args = parser.parse_args()
infenrence_engine = InferenceEngine(args.config)
infenrence_engine.run()