import os import sys from datetime import datetime import torch import pickle from tqdm import tqdm path = os.path.abspath(__file__) for i in range(2): path = os.path.dirname(path) PROJECT_ROOT = path sys.path.append(PROJECT_ROOT) from configs.config import ConfigManager from datasets.dataset_factory import DatasetFactory from modules.pipeline import Pipeline from runners.runner import Runner class InferenceEngine(Runner): RESULTS_DIR_NAME: str = 'results' LOG_DIR_NAME: str = 'log' def __init__(self, config_path): super().__init__(config_path) ''' Pipeline ''' self.pipeline_config = ConfigManager.get("settings", "pipeline") self.pipeline = Pipeline(self.pipeline_config).to(self.device) ''' Experiment ''' self.model_path = ConfigManager.get("settings", "experiment", "model_path") self.load_checkpoint(self.model_path) self.load_experiment("inference") ''' Inference Results ''' self.inference_results_config = ConfigManager.get("settings", "results") self.save_data_keys = self.inference_results_config["save_data_keys"] self.save_output_keys = self.inference_results_config["save_output_keys"] ''' Test ''' self.test_config = ConfigManager.get("settings", "test") self.test_dataset_config_list = self.test_config["dataset_list"] self.test_set_list = [] seen_name = set() for test_dataset_config in self.test_dataset_config_list: if test_dataset_config["name"] not in seen_name: seen_name.add(test_dataset_config["name"]) else: raise ValueError("Duplicate test dataset name: {}".format(test_dataset_config["name"])) test_set = DatasetFactory.create(test_dataset_config) self.test_set_list.append(test_set) del seen_name self.print_info() def run(self): print("Inference start...") self.test() print("Inference finished!") def test(self): self.pipeline.eval() with torch.no_grad(): for dataset_idx, test_set in enumerate(self.test_set_list): test_set_name = self.test_dataset_config_list[dataset_idx]["name"] ratio = self.test_dataset_config_list[dataset_idx]["ratio"] test_loader = test_set.get_loader() loop = tqdm(enumerate(test_loader), total=int(len(test_loader))) for i, data in loop: test_set.process_batch(data, self.device) output = self.pipeline(data, Pipeline.TEST_MODE) self.save_output(output, data, test_set_name, i) loop.set_description( f'Inference (Test: {test_set_name}, ratio={ratio})') def save_output(self, output, data, test_set_name, idx): results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME) if not os.path.exists(os.path.join(results_dir,test_set_name)): os.makedirs(os.path.join(results_dir,test_set_name)) save_path = os.path.join(results_dir, test_set_name, f"{idx}.pkl") data = {key: value for key, value in data.items() if key in self.save_data_keys} output = {key: value for key, value in output.items() if key in self.save_output_keys} output_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in output.items()} data_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in data.items()} with open(save_path, "wb") as f: pickle.dump({"output":output_converted,"data":data_converted}, f) def load_checkpoint(self, model_path): self.pipeline.load(model_path) print(f"Checkpoint loaded from {model_path}") def load_experiment(self, backup_name=None): super().load_experiment(backup_name) def create_experiment(self, backup_name=None): super().create_experiment(backup_name) results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME) os.makedirs(results_dir) def print_info(self): def print_dataset(config, dataset): print("\t name: {}".format(config["name"])) print("\t source: {}".format(config["source"])) print("\t data_type: {}".format(config["data_type"])) print("\t total_length: {}".format(len(dataset))) print("\t ratio: {}".format(config["ratio"])) print() super().print_info() table_size = 70 print(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+') print(self.pipeline) print(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+') for i, test_dataset_config in enumerate(self.test_dataset_config_list): print(f"test dataset {i}: ") print_dataset(test_dataset_config, self.test_set_list[i]) print(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+') if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="configs/local_inference_config.yaml") args = parser.parse_args() infenrence_engine = InferenceEngine(args.config) infenrence_engine.run()