349 lines
18 KiB
Python
349 lines
18 KiB
Python
import os
|
||
import json
|
||
from utils.render import RenderUtil
|
||
from utils.pose import PoseUtil
|
||
from utils.pts import PtsUtil
|
||
from utils.reconstruction import ReconstructionUtil
|
||
from beans.predict_result import PredictResult
|
||
|
||
from tqdm import tqdm
|
||
import numpy as np
|
||
import pickle
|
||
|
||
from PytorchBoot.config import ConfigManager
|
||
import PytorchBoot.namespace as namespace
|
||
import PytorchBoot.stereotype as stereotype
|
||
from PytorchBoot.factory import ComponentFactory
|
||
|
||
from PytorchBoot.dataset import BaseDataset
|
||
from PytorchBoot.runners.runner import Runner
|
||
from PytorchBoot.utils import Log
|
||
from PytorchBoot.status import status_manager
|
||
from utils.data_load import DataLoadUtil
|
||
|
||
@stereotype.runner("evaluate_uncertainty_guide")
|
||
class EvaluateUncertaintyGuide(Runner):
|
||
def __init__(self, config_path):
|
||
|
||
super().__init__(config_path)
|
||
|
||
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
||
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
|
||
CM = 0.01
|
||
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) ** 2
|
||
self.overlap_limit = ConfigManager.get(namespace.Stereotype.RUNNER, "overlap_limit")
|
||
|
||
self.radius = 0.5
|
||
self.output_data_root = ConfigManager.get(namespace.Stereotype.RUNNER, "output_data_root")
|
||
self.output_data = dict()
|
||
for scene_name in os.listdir(self.output_data_root):
|
||
real_scene_name = scene_name[:-len("_poses.npy")]
|
||
self.output_data[real_scene_name] = np.load(os.path.join(self.output_data_root, scene_name))
|
||
#mport ipdb; ipdb.set_trace()
|
||
''' Experiment '''
|
||
self.load_experiment("nbv_evaluator")
|
||
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
|
||
if os.path.exists(self.stat_result_path):
|
||
with open(self.stat_result_path, "r") as f:
|
||
self.stat_result = json.load(f)
|
||
else:
|
||
self.stat_result = {}
|
||
|
||
''' Test '''
|
||
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
||
self.test_dataset_name_list = self.test_config["dataset_list"]
|
||
self.test_set_list = []
|
||
self.test_writer_list = []
|
||
seen_name = set()
|
||
for test_dataset_name in self.test_dataset_name_list:
|
||
if test_dataset_name not in seen_name:
|
||
seen_name.add(test_dataset_name)
|
||
else:
|
||
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
|
||
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
|
||
self.test_set_list.append(test_set)
|
||
self.print_info()
|
||
|
||
|
||
def run(self):
|
||
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
||
self.inference()
|
||
Log.success("Inference finished.")
|
||
|
||
|
||
def inference(self):
|
||
#self.pipeline.eval()
|
||
|
||
test_set: BaseDataset
|
||
for dataset_idx, test_set in enumerate(self.test_set_list):
|
||
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
||
test_set_name = test_set.get_name()
|
||
|
||
total=int(len(test_set))
|
||
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
|
||
try:
|
||
data = test_set.__getitem__(i)
|
||
scene_name = data["scene_name"]
|
||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||
|
||
if os.path.exists(inference_result_path):
|
||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||
continue
|
||
|
||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||
output = self.predict_sequence(data)
|
||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||
except Exception as e:
|
||
print(e)
|
||
Log.error(f"Error, {e}")
|
||
continue
|
||
|
||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||
|
||
def get_output_data(self, scene_name, idx):
|
||
pose_matrix = self.output_data[scene_name][idx]
|
||
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||
pose_matrix = pose_matrix @ offset
|
||
rot = pose_matrix[:3,:3]
|
||
|
||
pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(rot)
|
||
|
||
# 计算相机在球面上的位置
|
||
camera_direction = rot[:, 2] # 相机朝向球心
|
||
translation = -self.radius * camera_direction # 相机位置在球面上
|
||
|
||
pose_9d = np.concatenate([pose_6d, translation], axis=0).reshape(1,9)
|
||
pose_9d = pose_9d.repeat(50, axis=0)
|
||
#import ipdb; ipdb.set_trace()
|
||
return {"pred_pose_9d": pose_9d}
|
||
|
||
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
|
||
scene_name = data["scene_name"]
|
||
Log.info(f"Processing scene: {scene_name}")
|
||
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
||
|
||
''' data for rendering '''
|
||
scene_path = data["scene_path"]
|
||
O_to_L_pose = data["O_to_L_pose"]
|
||
voxel_threshold = self.voxel_size
|
||
filter_degree = 75
|
||
down_sampled_model_pts = data["gt_pts"]
|
||
|
||
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
|
||
first_frame_to_world = np.eye(4)
|
||
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
|
||
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
|
||
|
||
''' data for inference '''
|
||
input_data = {}
|
||
|
||
input_data["combined_scanned_pts"] = np.array(data["first_scanned_pts"][0], dtype=np.float32)
|
||
input_data["scanned_pts"] = [np.array(data["first_scanned_pts"][0], dtype=np.float32)]
|
||
input_data["scanned_pts_mask"] = [np.zeros(input_data["combined_scanned_pts"].shape[0], dtype=np.bool_)]
|
||
input_data["scanned_n_to_world_pose_9d"] = [np.array(data["first_scanned_n_to_world_pose_9d"], dtype=np.float32)]
|
||
input_data["mode"] = namespace.Mode.TEST
|
||
input_pts_N = input_data["combined_scanned_pts"].shape[0]
|
||
root = os.path.dirname(scene_path)
|
||
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
|
||
radius = display_table_info["radius"]
|
||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||
|
||
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||
scanned_view_pts = [first_frame_target_pts]
|
||
history_indices = [first_frame_scan_points_indices]
|
||
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||
retry_duplication_pose = []
|
||
retry_no_pts_pose = []
|
||
retry_overlap_pose = []
|
||
retry = 0
|
||
pred_cr_seq = [last_pred_cr]
|
||
success = 0
|
||
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
||
#import time
|
||
for i in range(len(self.output_data[scene_name])):
|
||
#import ipdb; ipdb.set_trace()
|
||
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||
|
||
output = self.get_output_data(scene_name, i)
|
||
pred_pose_9d = output["pred_pose_9d"]
|
||
pred_pose = np.eye(4)
|
||
|
||
predict_result = PredictResult(pred_pose_9d, input_pts=input_data["combined_scanned_pts"], cluster_params=dict(eps=0.25, min_samples=3))
|
||
# -----------------------
|
||
# import ipdb; ipdb.set_trace()
|
||
# predict_result.visualize()
|
||
# -----------------------
|
||
pred_pose_9d_candidates = predict_result.candidate_9d_poses
|
||
#import ipdb; ipdb.set_trace()
|
||
for pred_pose_9d in pred_pose_9d_candidates:
|
||
#import ipdb; ipdb.set_trace()
|
||
pred_pose_9d = np.array(pred_pose_9d, dtype=np.float32)
|
||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(pred_pose_9d[:6])
|
||
pred_pose[:3,3] = pred_pose_9d[6:]
|
||
try:
|
||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||
#import ipdb; ipdb.set_trace()
|
||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||
curr_overlap_area_threshold = overlap_area_threshold
|
||
else:
|
||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||
|
||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||
#import ipdb; ipdb.set_trace()
|
||
if self.overlap_limit:
|
||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||
if not overlap:
|
||
Log.yellow("no overlap!")
|
||
retry += 1
|
||
retry_overlap_pose.append(pred_pose.tolist())
|
||
continue
|
||
|
||
history_indices.append(new_scan_points_indices)
|
||
except Exception as e:
|
||
Log.error(f"Error in scene {scene_path}, {e}")
|
||
print("current pose: ", pred_pose)
|
||
print("curr_pred_cr: ", last_pred_cr)
|
||
retry_no_pts_pose.append(pred_pose.tolist())
|
||
retry += 1
|
||
continue
|
||
|
||
if new_target_pts.shape[0] == 0:
|
||
Log.red("no pts in new target")
|
||
retry_no_pts_pose.append(pred_pose.tolist())
|
||
retry += 1
|
||
continue
|
||
|
||
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||
print("max coverage rate reached!: ", pred_cr)
|
||
|
||
|
||
|
||
pred_cr_seq.append(pred_cr)
|
||
scanned_view_pts.append(new_target_pts)
|
||
|
||
pred_pose_9d = pred_pose_9d.reshape(1, -1)
|
||
input_data["scanned_n_to_world_pose_9d"] = [np.concatenate([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], axis=0)]
|
||
|
||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||
input_data["combined_scanned_pts"] = np.array(random_downsampled_combined_scanned_pts_np, dtype=np.float32)
|
||
input_data["scanned_pts"] = [np.concatenate([input_data["scanned_pts"][0], np.array(random_downsampled_combined_scanned_pts_np, dtype=np.float32)], axis=0)]
|
||
|
||
last_pred_cr = pred_cr
|
||
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||
|
||
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||
retry += 1
|
||
retry_duplication_pose.append(pred_pose.tolist())
|
||
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||
success += 1
|
||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||
|
||
last_pts_num = pts_num
|
||
|
||
|
||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].tolist()
|
||
result = {
|
||
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
|
||
"combined_scanned_pts": input_data["combined_scanned_pts"],
|
||
"target_pts_seq": scanned_view_pts,
|
||
"coverage_rate_seq": pred_cr_seq,
|
||
"max_coverage_rate": data["seq_max_coverage_rate"],
|
||
"pred_max_coverage_rate": max(pred_cr_seq),
|
||
"scene_name": scene_name,
|
||
"retry_no_pts_pose": retry_no_pts_pose,
|
||
"retry_duplication_pose": retry_duplication_pose,
|
||
"retry_overlap_pose": retry_overlap_pose,
|
||
"best_seq_len": data["best_seq_len"],
|
||
}
|
||
self.stat_result[scene_name] = {
|
||
"coverage_rate_seq": pred_cr_seq,
|
||
"pred_max_coverage_rate": max(pred_cr_seq),
|
||
"pred_seq_len": len(pred_cr_seq),
|
||
}
|
||
print('success rate: ', max(pred_cr_seq))
|
||
|
||
return result
|
||
|
||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||
idx_sort = np.argsort(inverse)
|
||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||
downsampled_points = point_cloud[idx_unique]
|
||
return downsampled_points, inverse
|
||
|
||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||
if new_pts is not None:
|
||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||
else:
|
||
new_scanned_view_pts = scanned_view_pts
|
||
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
||
|
||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||
idx_sort = np.argsort(inverse)
|
||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||
downsampled_points = point_cloud[idx_unique]
|
||
return downsampled_points, inverse
|
||
|
||
def save_inference_result(self, dataset_name, scene_name, output):
|
||
dataset_dir = os.path.join(self.output_dir, dataset_name)
|
||
if not os.path.exists(dataset_dir):
|
||
os.makedirs(dataset_dir)
|
||
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
||
pickle.dump(output, open(output_path, "wb"))
|
||
with open(self.stat_result_path, "w") as f:
|
||
json.dump(self.stat_result, f)
|
||
|
||
|
||
def get_checkpoint_path(self, is_last=False):
|
||
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
|
||
"Epoch_{}.pth".format(
|
||
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
|
||
|
||
def load_experiment(self, backup_name=None):
|
||
super().load_experiment(backup_name)
|
||
self.current_epoch = self.experiments_config["epoch"]
|
||
#self.load_checkpoint(is_last=(self.current_epoch == -1))
|
||
|
||
def create_experiment(self, backup_name=None):
|
||
super().create_experiment(backup_name)
|
||
|
||
|
||
def load(self, path):
|
||
# 如果仍然需要加载某些数据,可以使用numpy的load方法
|
||
pass
|
||
|
||
def print_info(self):
|
||
def print_dataset(dataset: BaseDataset):
|
||
config = dataset.get_config()
|
||
name = dataset.get_name()
|
||
Log.blue(f"Dataset: {name}")
|
||
for k,v in config.items():
|
||
Log.blue(f"\t{k}: {v}")
|
||
|
||
super().print_info()
|
||
table_size = 70
|
||
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
|
||
#Log.blue(self.pipeline)
|
||
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
|
||
for i, test_set in enumerate(self.test_set_list):
|
||
Log.blue(f"test dataset {i}: ")
|
||
print_dataset(test_set)
|
||
|
||
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
|
||
|