2025-05-13 09:03:38 +08:00

122 lines
4.1 KiB
Python

import functools
import torch
import numpy as np
# ----- VE SDE -----
# ------------------
def ve_marginal_prob(x, t, sigma_min=0.01, sigma_max=90):
std = sigma_min * (sigma_max / sigma_min) ** t
mean = x
return mean, std
def ve_sde(t, sigma_min=0.01, sigma_max=90):
sigma = sigma_min * (sigma_max / sigma_min) ** t
drift_coeff = torch.tensor(0)
diffusion_coeff = sigma * torch.sqrt(torch.tensor(2 * (np.log(sigma_max) - np.log(sigma_min)), device=t.device))
return drift_coeff, diffusion_coeff
def ve_prior(shape, sigma_min=0.01, sigma_max=90, T=1.0):
_, sigma_max_prior = ve_marginal_prob(None, T, sigma_min=sigma_min, sigma_max=sigma_max)
return torch.randn(*shape) * sigma_max_prior
# ----- VP SDE -----
# ------------------
def vp_marginal_prob(x, t, beta_0=0.1, beta_1=20):
log_mean_coeff = -0.25 * t ** 2 * (beta_1 - beta_0) - 0.5 * t * beta_0
mean = torch.exp(log_mean_coeff) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def vp_sde(t, beta_0=0.1, beta_1=20):
beta_t = beta_0 + t * (beta_1 - beta_0)
drift_coeff = -0.5 * beta_t
diffusion_coeff = torch.sqrt(beta_t)
return drift_coeff, diffusion_coeff
def vp_prior(shape, beta_0=0.1, beta_1=20):
return torch.randn(*shape)
# ----- sub-VP SDE -----
# ----------------------
def subvp_marginal_prob(x, t, beta_0, beta_1):
log_mean_coeff = -0.25 * t ** 2 * (beta_1 - beta_0) - 0.5 * t * beta_0
mean = torch.exp(log_mean_coeff) * x
std = 1 - torch.exp(2. * log_mean_coeff)
return mean, std
def subvp_sde(t, beta_0, beta_1):
beta_t = beta_0 + t * (beta_1 - beta_0)
drift_coeff = -0.5 * beta_t
discount = 1. - torch.exp(-2 * beta_0 * t - (beta_1 - beta_0) * t ** 2)
diffusion_coeff = torch.sqrt(beta_t * discount)
return drift_coeff, diffusion_coeff
def subvp_prior(shape, beta_0=0.1, beta_1=20):
return torch.randn(*shape)
# ----- EDM SDE -----
# ------------------
def edm_marginal_prob(x, t, sigma_min=0.002, sigma_max=80):
std = t
mean = x
return mean, std
def edm_sde(t, sigma_min=0.002, sigma_max=80):
drift_coeff = torch.tensor(0)
diffusion_coeff = torch.sqrt(2 * t)
return drift_coeff, diffusion_coeff
def edm_prior(shape, sigma_min=0.002, sigma_max=80):
return torch.randn(*shape) * sigma_max
def init_sde(sde_mode):
# the SDE-related hyperparameters are copied from https://github.com/yang-song/score_sde_pytorch
if sde_mode == 'edm':
sigma_min = 0.002
sigma_max = 80
eps = 0.002
prior_fn = functools.partial(edm_prior, sigma_min=sigma_min, sigma_max=sigma_max)
marginal_prob_fn = functools.partial(edm_marginal_prob, sigma_min=sigma_min, sigma_max=sigma_max)
sde_fn = functools.partial(edm_sde, sigma_min=sigma_min, sigma_max=sigma_max)
T = sigma_max
elif sde_mode == 've':
sigma_min = 0.01
sigma_max = 50
eps = 1e-5
marginal_prob_fn = functools.partial(ve_marginal_prob, sigma_min=sigma_min, sigma_max=sigma_max)
sde_fn = functools.partial(ve_sde, sigma_min=sigma_min, sigma_max=sigma_max)
T = 1.0
prior_fn = functools.partial(ve_prior, sigma_min=sigma_min, sigma_max=sigma_max)
elif sde_mode == 'vp':
beta_0 = 0.1
beta_1 = 20
eps = 1e-3
prior_fn = functools.partial(vp_prior, beta_0=beta_0, beta_1=beta_1)
marginal_prob_fn = functools.partial(vp_marginal_prob, beta_0=beta_0, beta_1=beta_1)
sde_fn = functools.partial(vp_sde, beta_0=beta_0, beta_1=beta_1)
T = 1.0
elif sde_mode == 'subvp':
beta_0 = 0.1
beta_1 = 20
eps = 1e-3
prior_fn = functools.partial(subvp_prior, beta_0=beta_0, beta_1=beta_1)
marginal_prob_fn = functools.partial(subvp_marginal_prob, beta_0=beta_0, beta_1=beta_1)
sde_fn = functools.partial(subvp_sde, beta_0=beta_0, beta_1=beta_1)
T = 1.0
else:
raise NotImplementedError
return prior_fn, marginal_prob_fn, sde_fn, eps, T