254 lines
8.3 KiB
Python
254 lines
8.3 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class PoseUtil:
|
|
ROTATION = 1
|
|
TRANSLATION = 2
|
|
SCALE = 3
|
|
|
|
@staticmethod
|
|
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
|
|
if isinstance(trans_m_min, list):
|
|
x_min, y_min, z_min = trans_m_min
|
|
x_max, y_max, z_max = trans_m_max
|
|
else:
|
|
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
|
|
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
|
|
|
|
x = np.random.uniform(x_min, x_max)
|
|
y = np.random.uniform(y_min, y_max)
|
|
z = np.random.uniform(z_min, z_max)
|
|
translation = np.array([x, y, z])
|
|
if trans_unit == "cm":
|
|
translation = translation / 100
|
|
if debug:
|
|
print("uniform translation:", translation)
|
|
return translation
|
|
|
|
@staticmethod
|
|
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
|
|
axis = np.random.randn(3)
|
|
axis /= np.linalg.norm(axis)
|
|
theta = np.random.uniform(
|
|
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
|
|
)
|
|
|
|
K = np.array(
|
|
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
|
|
)
|
|
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
|
|
if debug:
|
|
print("uniform rotation:", theta * 180 / np.pi)
|
|
return R
|
|
|
|
@staticmethod
|
|
def get_uniform_pose(
|
|
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
|
|
):
|
|
translation = PoseUtil.get_uniform_translation(
|
|
trans_min, trans_max, trans_unit, debug
|
|
)
|
|
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
|
pose = np.eye(4)
|
|
pose[:3, :3] = rotation
|
|
pose[:3, 3] = translation
|
|
return pose
|
|
|
|
@staticmethod
|
|
def get_n_uniform_pose(
|
|
trans_min,
|
|
trans_max,
|
|
rot_min=0,
|
|
rot_max=180,
|
|
n=1,
|
|
trans_unit="cm",
|
|
fix=None,
|
|
contain_canonical=True,
|
|
debug=False,
|
|
):
|
|
if fix == PoseUtil.ROTATION:
|
|
translations = np.zeros((n, 3))
|
|
for i in range(n):
|
|
translations[i] = PoseUtil.get_uniform_translation(
|
|
trans_min, trans_max, trans_unit, debug
|
|
)
|
|
if contain_canonical:
|
|
translations[0] = np.zeros(3)
|
|
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
|
elif fix == PoseUtil.TRANSLATION:
|
|
rotations = np.zeros((n, 3, 3))
|
|
for i in range(n):
|
|
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
|
if contain_canonical:
|
|
rotations[0] = np.eye(3)
|
|
translations = PoseUtil.get_uniform_translation(
|
|
trans_min, trans_max, trans_unit, debug
|
|
)
|
|
else:
|
|
translations = np.zeros((n, 3))
|
|
rotations = np.zeros((n, 3, 3))
|
|
for i in range(n):
|
|
translations[i] = PoseUtil.get_uniform_translation(
|
|
trans_min, trans_max, trans_unit, debug
|
|
)
|
|
for i in range(n):
|
|
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
|
if contain_canonical:
|
|
translations[0] = np.zeros(3)
|
|
rotations[0] = np.eye(3)
|
|
|
|
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
|
|
pose[:, :3, :3] = rotations
|
|
pose[:, :3, 3] = translations
|
|
|
|
return pose
|
|
|
|
@staticmethod
|
|
def get_n_uniform_pose_batch(
|
|
trans_min,
|
|
trans_max,
|
|
rot_min=0,
|
|
rot_max=180,
|
|
n=1,
|
|
batch_size=1,
|
|
trans_unit="cm",
|
|
fix=None,
|
|
contain_canonical=False,
|
|
debug=False,
|
|
):
|
|
|
|
batch_poses = []
|
|
for i in range(batch_size):
|
|
pose = PoseUtil.get_n_uniform_pose(
|
|
trans_min,
|
|
trans_max,
|
|
rot_min,
|
|
rot_max,
|
|
n,
|
|
trans_unit,
|
|
fix,
|
|
contain_canonical,
|
|
debug,
|
|
)
|
|
batch_poses.append(pose)
|
|
pose_batch = np.stack(batch_poses, axis=0)
|
|
return pose_batch
|
|
|
|
@staticmethod
|
|
def get_uniform_scale(scale_min, scale_max, debug=False):
|
|
if isinstance(scale_min, list):
|
|
x_min, y_min, z_min = scale_min
|
|
x_max, y_max, z_max = scale_max
|
|
else:
|
|
x_min, y_min, z_min = scale_min, scale_min, scale_min
|
|
x_max, y_max, z_max = scale_max, scale_max, scale_max
|
|
|
|
x = np.random.uniform(x_min, x_max)
|
|
y = np.random.uniform(y_min, y_max)
|
|
z = np.random.uniform(z_min, z_max)
|
|
scale = np.array([x, y, z])
|
|
if debug:
|
|
print("uniform scale:", scale)
|
|
return scale
|
|
|
|
@staticmethod
|
|
def normalize_rotation(rotation, rotation_mode):
|
|
if rotation_mode == "quat_wxyz" or rotation_mode == "quat_xyzw":
|
|
rotation /= torch.norm(rotation, dim=-1, keepdim=True)
|
|
elif rotation_mode == "rot_matrix":
|
|
rot_matrix = PoseUtil.rotation_6d_to_matrix_tensor_batch(rotation)
|
|
rotation[:, :3] = rot_matrix[:, 0, :]
|
|
rotation[:, 3:6] = rot_matrix[:, 1, :]
|
|
elif rotation_mode == "euler_xyz_sx_cx":
|
|
rot_sin_theta = rotation[:, :3]
|
|
rot_cos_theta = rotation[:, 3:6]
|
|
theta = torch.atan2(rot_sin_theta, rot_cos_theta)
|
|
rotation[:, :3] = torch.sin(theta)
|
|
rotation[:, 3:6] = torch.cos(theta)
|
|
elif rotation_mode == "euler_xyz":
|
|
pass
|
|
else:
|
|
raise NotImplementedError
|
|
return rotation
|
|
|
|
@staticmethod
|
|
def get_pose_dim(rot_mode):
|
|
assert rot_mode in [
|
|
"quat_wxyz",
|
|
"quat_xyzw",
|
|
"euler_xyz",
|
|
"euler_xyz_sx_cx",
|
|
"rot_matrix",
|
|
], f"the rotation mode {rot_mode} is not supported!"
|
|
|
|
if rot_mode == "quat_wxyz" or rot_mode == "quat_xyzw":
|
|
pose_dim = 7
|
|
elif rot_mode == "euler_xyz":
|
|
pose_dim = 6
|
|
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
|
|
pose_dim = 9
|
|
else:
|
|
raise NotImplementedError
|
|
return pose_dim
|
|
|
|
@staticmethod
|
|
def rotation_6d_to_matrix_tensor_batch(d6: torch.Tensor) -> torch.Tensor:
|
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:]
|
|
b1 = F.normalize(a1, dim=-1)
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
|
b2 = F.normalize(b2, dim=-1)
|
|
b3 = torch.cross(b1, b2, dim=-1)
|
|
return torch.stack((b1, b2, b3), dim=-2)
|
|
|
|
@staticmethod
|
|
def matrix_to_rotation_6d_tensor_batch(matrix: torch.Tensor) -> torch.Tensor:
|
|
batch_dim = matrix.size()[:-2]
|
|
return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
|
|
|
|
@staticmethod
|
|
def rotation_6d_to_matrix_numpy(d6):
|
|
a1, a2 = d6[:3], d6[3:]
|
|
b1 = a1 / np.linalg.norm(a1)
|
|
b2 = a2 - np.dot(b1, a2) * b1
|
|
b2 = b2 / np.linalg.norm(b2)
|
|
b3 = np.cross(b1, b2)
|
|
return np.stack((b1, b2, b3), axis=-2)
|
|
|
|
@staticmethod
|
|
def matrix_to_rotation_6d_numpy(matrix):
|
|
return np.copy(matrix[:2, :]).reshape((6,))
|
|
|
|
@staticmethod
|
|
def rotation_angle_distance(R1, R2):
|
|
R = torch.matmul(R1, R2.transpose(1, 2))
|
|
trace = torch.diagonal(R, dim1=1, dim2=2).sum(-1)
|
|
angle = torch.acos(torch.clamp((trace - 1) / 2, -1.0, 1.0))/torch.pi*180
|
|
return angle
|
|
|
|
|
|
""" ------------ Debug ------------ """
|
|
|
|
if __name__ == "__main__":
|
|
for _ in range(1):
|
|
PoseUtil.get_uniform_pose(
|
|
trans_min=[-25, -25, 10],
|
|
trans_max=[25, 25, 60],
|
|
rot_min=0,
|
|
rot_max=10,
|
|
debug=True,
|
|
)
|
|
PoseUtil.get_uniform_scale(scale_min=0.25, scale_max=0.30, debug=True)
|
|
PoseUtil.get_n_uniform_pose_batch(
|
|
trans_min=[-25, -25, 10],
|
|
trans_max=[25, 25, 60],
|
|
rot_min=0,
|
|
rot_max=10,
|
|
batch_size=2,
|
|
n=2,
|
|
fix=PoseUtil.TRANSLATION,
|
|
debug=True,
|
|
)
|