2025-05-13 09:03:38 +08:00

27 lines
838 B
Python

import torch
import PytorchBoot.stereotype as stereotype
@stereotype.loss_function("gf_loss")
class GFLoss:
def __init__(self, _):
pass
def compute(self, output, _):
estimated_score = output['estimated_score']
target_score = output['target_score']
std = output['std']
bs = estimated_score.shape[0]
loss_weighting = std ** 2
loss = torch.mean(torch.sum((loss_weighting * (estimated_score - target_score) ** 2).view(bs, -1), dim=-1))
return loss
@stereotype.loss_function("mse_loss")
class MSELoss:
def __init__(self,_):
pass
def compute(self, output, _):
pred_pose = output["pred"]
gt_pose = output["gt"]
loss = torch.mean(torch.sum((pred_pose - gt_pose) ** 2, dim=-1))
return loss