2021-08-16 17:38:17 +02:00

90 lines
2.7 KiB
Python

import itertools
import numpy as np
from robot_helpers.perception import CameraIntrinsic
from robot_helpers.spatial import Transform
import rospy
from .policy import BasePolicy
from vgn.utils import look_at, spherical_to_cartesian
class Ray:
def __init__(self, origin, direction):
self.o = origin
self.d = direction
def __call__(self, t):
return self.o + self.d * t
class NextBestView(BasePolicy):
def __init__(self, rate, filter_grasps):
super().__init__(rate, filter_grasps)
def activate(self, bbox):
super().activate(bbox)
def update(self, img, extrinsic):
# Integrate latest measurement
self.integrate_img(img, extrinsic)
# Generate viewpoints
views = self.generate_viewpoints()
# Evaluate viewpoints
gains = [self.compute_ig(v) for v in views]
costs = [self.compute_cost(v) for v in views]
utilities = gains / np.sum(gains) - costs / np.sum(costs)
# Visualize
self.visualizer.views(self.intrinsic, views, utilities)
# Determine next-best-view
nbv = views[np.argmax(utilities)]
if self.check_done():
self.best_grasp = self.compute_best_grasp()
self.done = True
else:
return nbv
def generate_viewpoints(self):
r, h = 0.14, 0.2
thetas = np.arange(1, 4) * np.deg2rad(30)
phis = np.arange(1, 6) * np.deg2rad(60)
views = []
for theta, phi in itertools.product(thetas, phis):
eye = self.center + np.r_[0, 0, h] + spherical_to_cartesian(r, theta, phi)
target = self.center
up = np.r_[1.0, 0.0, 0.0]
views.append(look_at(eye, target, up).inv())
return views
def compute_ig(self, view, downsample=20):
fx = self.intrinsic.fx / downsample
fy = self.intrinsic.fy / downsample
cx = self.intrinsic.cx / downsample
cy = self.intrinsic.cy / downsample
T_cam_base = view.inv()
corners = np.array([T_cam_base.apply(p) for p in self.bbox.corners]).T
u = (fx * corners[0] / corners[2] + cx).round().astype(int)
v = (fy * corners[1] / corners[2] + cy).round().astype(int)
u_min, u_max = u.min(), u.max()
v_min, v_max = v.min(), v.max()
for u in range(u_min, u_max):
for v in range(v_min, v_max):
direction = np.r_[(u - cx) / fx, (v - cy) / fy, 1.0]
direction = direction / np.linalg.norm(direction)
direction = view.rotation.apply(direction)
ray = Ray(view.translation, direction)
return 1.0
def compute_cost(self, view):
return 1.0
def check_done(self):
return len(self.viewpoints) == 20