2021-08-11 18:12:32 +02:00

48 lines
1.2 KiB
Python

import numpy as np
from .policy import BasePolicy
from vgn.utils import look_at
class NextBestView(BasePolicy):
def __init__(self, rate, filter_grasps):
super().__init__(rate, filter_grasps)
def activate(self, bbox):
super().activate(bbox)
def update(self, img, extrinsic):
# Integrate latest measurement
self.integrate_img(img, extrinsic)
# Generate viewpoints
views = self.generate_viewpoints()
# Evaluate viewpoints
gains = [self.compute_ig(v) for v in views]
costs = [self.compute_cost(v) for v in views]
utilities = gains / np.sum(gains) - costs / np.sum(costs)
# Determine next-best-view
nbv = views[np.argmax(utilities)]
if self.check_done():
self.best_grasp = self.compute_best_grasp()
self.done = True
else:
return nbv
def generate_viewpoints(self):
eye = np.r_[self.center[:2], self.center[2] + 0.3]
up = np.r_[1.0, 0.0, 0.0]
return [look_at(eye, self.center, up)]
def compute_ig(self, view):
return 1.0
def compute_cost(self, view):
return 1.0
def check_done(self):
return len(self.viewpoints) == 20