nbv_sim/active_grasp/baselines.py
2021-08-05 13:45:22 +02:00

124 lines
3.7 KiB
Python

import numpy as np
import scipy.interpolate
import rospy
from .policy import BasePolicy
from vgn.utils import look_at
class SingleView(BasePolicy):
"""
Process a single image from the initial viewpoint.
"""
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
self.best_grasp = self.predict_best_grasp()
self.done = True
class TopView(BasePolicy):
"""
Move the camera to a top-down view of the target object.
"""
def activate(self, bbox):
super().activate(bbox)
eye = np.r_[self.center[:2], self.center[2] + 0.3]
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, self.center, up)
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self.predict_best_grasp()
self.done = True
return self.target
class RandomView(BasePolicy):
"""
Move the camera to a random viewpoint on a circle centered above the target.
"""
def __init__(self, intrinsic):
super().__init__(intrinsic)
self.r = 0.06 # radius of the circle
self.h = 0.3 # distance above bbox center
def activate(self, bbox):
super().activate(bbox)
t = np.random.uniform(np.pi, 3.0 * np.pi)
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, self.center, up)
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self.predict_best_grasp()
self.done = True
return self.target
class FixedTrajectory(BasePolicy):
"""
Follow a pre-defined circular trajectory centered above the target object.
"""
def __init__(self, intrinsic):
super().__init__(intrinsic)
self.r = 0.08
self.h = 0.3
self.duration = 6.0
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
def activate(self, bbox):
super().activate(bbox)
self.tic = rospy.Time.now()
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
if elapsed_time > self.duration:
self.best_grasp = self.predict_best_grasp()
self.done = True
else:
t = self.m(elapsed_time)
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
up = np.r_[1.0, 0.0, 0.0]
target = look_at(eye, self.center, up)
return target
class AlignmentView(BasePolicy):
"""
Align the camera with an initial grasp prediction as proposed in (Gualtieri, 2017).
"""
def activate(self, bbox):
super().activate(bbox)
self.target = None
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
if not self.target:
grasp = self.predict_best_grasp()
if not grasp:
self.done = True
return
R, t = grasp.pose.rotation, grasp.pose.translation
eye = R.apply([0.0, 0.0, -0.16]) + t
center = t
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, center, up)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self.predict_best_grasp()
self.done = True
return self.target