150 lines
4.9 KiB
Python
150 lines
4.9 KiB
Python
import numpy as np
|
|
from sensor_msgs.msg import CameraInfo
|
|
from pathlib import Path
|
|
import rospy
|
|
|
|
from .visualization import Visualizer
|
|
from robot_helpers.ros import tf
|
|
from robot_helpers.ros.conversions import *
|
|
from vgn.detection import *
|
|
from vgn.perception import UniformTSDFVolume
|
|
from vgn.utils import *
|
|
|
|
|
|
class Policy:
|
|
def __init__(self, rate=5):
|
|
self.rate = rate
|
|
self.load_parameters()
|
|
self.init_visualizer()
|
|
|
|
def load_parameters(self):
|
|
self.base_frame = rospy.get_param("~base_frame_id")
|
|
info_topic = rospy.get_param("~camera/info_topic")
|
|
self.linear_vel = rospy.get_param("~linear_vel")
|
|
self.min_z_dist = rospy.get_param("~camera/min_z_dist")
|
|
self.qual_threshold = rospy.get_param("~qual_threshold")
|
|
self.task_frame = "task"
|
|
|
|
msg = rospy.wait_for_message(info_topic, CameraInfo, rospy.Duration(2.0))
|
|
self.intrinsic = from_camera_info_msg(msg)
|
|
|
|
def init_visualizer(self):
|
|
self.vis = Visualizer()
|
|
|
|
def activate(self, bbox):
|
|
self.bbox = bbox
|
|
self.calibrate_task_frame()
|
|
self.vis.clear()
|
|
self.vis.bbox(self.base_frame, bbox)
|
|
self.tsdf = UniformTSDFVolume(0.3, 40)
|
|
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
|
self.views = []
|
|
self.best_grasp = None
|
|
self.done = False
|
|
|
|
def calibrate_task_frame(self):
|
|
self.center = 0.5 * (self.bbox.min + self.bbox.max)
|
|
self.T_base_task = Transform.translation(self.center - np.full(3, 0.15))
|
|
self.T_task_base = self.T_base_task.inv()
|
|
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
|
|
rospy.sleep(0.1)
|
|
|
|
def compute_error(self, x_d, x):
|
|
linear = x_d.translation - x.translation
|
|
angular = (x_d.rotation * x.rotation.inv()).as_rotvec()
|
|
return linear, angular
|
|
|
|
def compute_velocity_cmd(self, linear, angular):
|
|
kp = 4.0
|
|
linear = kp * linear
|
|
scale = np.linalg.norm(linear)
|
|
linear *= np.clip(scale, 0.0, self.linear_vel) / scale
|
|
return np.r_[linear, angular]
|
|
|
|
def sort_grasps(self, in_grasps):
|
|
# Transforms grasps into base frame, checks whether they lie on the target, and sorts by their score
|
|
grasps, scores = [], []
|
|
|
|
for grasp in in_grasps:
|
|
pose = self.T_base_task * grasp.pose
|
|
tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
|
|
if self.bbox.is_inside(tip):
|
|
grasp.pose = pose
|
|
grasps.append(grasp)
|
|
scores.append(self.score_fn(grasp))
|
|
|
|
grasps, scores = np.asarray(grasps), np.asarray(scores)
|
|
indices = np.argsort(-scores)
|
|
return grasps[indices], scores[indices]
|
|
|
|
def score_fn(self, grasp):
|
|
# return grasp.quality
|
|
return grasp.pose.translation[2]
|
|
|
|
def update(self, img, pose):
|
|
raise NotImplementedError
|
|
|
|
|
|
class SingleViewPolicy(Policy):
|
|
def update(self, img, x):
|
|
linear, angular = self.compute_error(self.x_d, x)
|
|
|
|
if np.linalg.norm(linear) < 0.02:
|
|
self.views.append(x)
|
|
|
|
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
|
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
|
|
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
|
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
|
|
|
|
out = self.vgn.predict(tsdf_grid)
|
|
self.vis.quality(self.task_frame, voxel_size, out.qual)
|
|
|
|
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
|
|
grasps, scores = self.sort_grasps(grasps)
|
|
|
|
self.vis.grasps(self.base_frame, grasps, scores)
|
|
|
|
self.best_grasp = grasps[0] if len(grasps) > 0 else None
|
|
self.done = True
|
|
return np.zeros(6)
|
|
else:
|
|
return self.compute_velocity_cmd(linear, angular)
|
|
|
|
|
|
class MultiViewPolicy(Policy):
|
|
def integrate(self, img, x):
|
|
self.views.append(x)
|
|
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
|
|
|
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
|
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
|
|
self.vis.path(self.base_frame, self.views)
|
|
|
|
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
|
|
out = self.vgn.predict(tsdf_grid)
|
|
|
|
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
|
|
grasps, scores = self.sort_grasps(grasps)
|
|
|
|
if len(grasps) > 0:
|
|
self.best_grasp = grasps[0]
|
|
self.vis.best_grasp(self.base_frame, grasps[0], scores[0])
|
|
|
|
self.vis.grasps(self.base_frame, grasps, scores)
|
|
|
|
|
|
registry = {}
|
|
|
|
|
|
def register(id, cls):
|
|
global registry
|
|
registry[id] = cls
|
|
|
|
|
|
def make(id, *args, **kwargs):
|
|
if id in registry:
|
|
return registry[id](*args, **kwargs)
|
|
else:
|
|
raise ValueError("{} policy does not exist.".format(id))
|