{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate table entry of a single experiment." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "logfile = \"\"\n", "\n", "df = pd.read_csv(logfile)\n", "df = df[df.result != \"no_motion_plan_found\"]\n", "\n", "n_attempts = len(df.index)\n", "n_succeeded = (df.result == \"succeeded\").sum()\n", "n_failed = (df.result == \"failed\").sum()\n", "n_aborted = (df.result == \"aborted\").sum()\n", "\n", "views_mean = df.view_count.mean()\n", "views_std = df.view_count.std()\n", "\n", "search_time_mean = df.search_time.mean()\n", "search_time_std = df.search_time.std()\n", "\n", "total_time_mean = (df.search_time + df.grasp_time).mean()\n", "total_time_std = (df.search_time + df.grasp_time).std()\n", "\n", "print(f\"${n_succeeded / n_attempts:.2f}$ & ${n_failed / n_attempts:.2f}$ & ${n_aborted / n_attempts:.2f}$ & ${views_mean:.0f} \\pm {views_std:.0f}$ & ${search_time_mean:.2f} \\pm {search_time_std:.2f}$ & ${total_time_mean:.2f} \\pm {total_time_std:.2f}$\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute timings" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "view_generation = df.view_generation / df.view_count\n", "state_update = df.state_update / df.view_count\n", "tsdf_update = df.tsdf_integration / df.view_count\n", "grasp_prediction = df.grasp_prediction / df.view_count\n", "grasp_selection = df.grasp_selection / df.view_count\n", "ig_computation = df.ig_computation / df.view_count\n", "\n", "print(f\"View generation: {view_generation.mean():.3f}\")\n", "print(f\"State update: {state_update.mean():.3f}\")\n", "print(f\" TSDF update: {tsdf_update.mean():.3f}\")\n", "print(f\" Grasp prediction: {grasp_prediction.mean():.3f}\")\n", "print(f\" Grasp selection: {grasp_selection.mean():.3f}\")\n", "print(f\"IG computation: {ig_computation.mean():.3f}\")\n", "print(\"---\")\n", "print(f\"Total time: {view_generation.mean() + state_update.mean() + ig_computation.mean():.3f}\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "fb16c2a7860a3d6783f021a002ede0627d3977ca7b794dfd7ea4f613fe21e5c4" }, "kernelspec": { "display_name": "Python 3.8.10 64-bit ('noetic': venv)", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }