import numpy as np from sensor_msgs.msg import CameraInfo from pathlib import Path import rospy import warnings from .visualization import Visualizer from robot_helpers.ros import tf from robot_helpers.ros.conversions import * from vgn.detection import * from vgn.perception import UniformTSDFVolume from vgn.utils import * class Policy: def activate(self, bbox): raise NotImplementedError def update(self, img, extrinsic): raise NotImplementedError class BasePolicy(Policy): def __init__(self, rate=5, filter_grasps=False): self.rate = rate self.filter_grasps = filter_grasps self.load_parameters() self.init_visualizer() def load_parameters(self): self.base_frame = rospy.get_param("active_grasp/base_frame_id") self.task_frame = "task" info_topic = rospy.get_param("active_grasp/camera/info_topic") msg = rospy.wait_for_message(info_topic, CameraInfo, rospy.Duration(2.0)) self.intrinsic = from_camera_info_msg(msg) self.vgn = VGN(Path(rospy.get_param("vgn/model"))) self.score_fn = lambda g: g.pose.translation[2] # TODO def init_visualizer(self): self.visualizer = Visualizer(self.base_frame) def activate(self, bbox): self.bbox = bbox self.center = 0.5 * (bbox.min + bbox.max) self.T_base_task = Transform.translation(self.center - np.full(3, 0.15)) tf.broadcast(self.T_base_task, self.base_frame, self.task_frame) rospy.sleep(1.0) # wait for the transform to be published N, self.T = 40, 10 grid_shape = (N,) * 3 self.tsdf = UniformTSDFVolume(0.3, N) self.qual_hist = np.zeros((self.T,) + grid_shape, np.float32) self.rot_hist = np.zeros((self.T, 4) + grid_shape, np.float32) self.width_hist = np.zeros((self.T,) + grid_shape, np.float32) self.viewpoints = [] self.done = False self.best_grasp = None self.visualizer.clear() self.visualizer.bbox(bbox) def integrate_img(self, img, extrinsic): self.viewpoints.append(extrinsic.inv()) self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task) if self.filter_grasps: out = self.vgn.predict(self.tsdf.get_grid()) t = (len(self.viewpoints) - 1) % self.T self.qual_hist[t, ...] = out.qual self.rot_hist[t, ...] = out.rot self.width_hist[t, ...] = out.width mean_qual = self.compute_mean_quality() self.visualizer.quality(self.task_frame, self.tsdf.voxel_size, mean_qual) self.visualizer.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud()) self.visualizer.path(self.viewpoints) def compute_best_grasp(self): if self.filter_grasps: qual = self.compute_mean_quality() index_list = select_local_maxima(qual, 0.9, 3) grasps = [g for i in index_list if (g := self.select_mean_at(i))] else: out = self.vgn.predict(self.tsdf.get_grid()) qual = out.qual index_list = select_local_maxima(qual, 0.9, 3) grasps = [select_at(out, i) for i in index_list] grasps = [from_voxel_coordinates(g, self.tsdf.voxel_size) for g in grasps] grasps = self.transform_and_reject(grasps) grasps = sort_grasps(grasps, self.score_fn) self.visualizer.quality(self.task_frame, self.tsdf.voxel_size, qual) self.visualizer.grasps(grasps) return grasps[0] if len(grasps) > 0 else None def compute_mean_quality(self): qual = np.mean(self.qual_hist, axis=0, where=self.qual_hist > 0.0) return np.nan_to_num(qual, copy=False) # mean of empty slices returns nan def select_mean_at(self, index): i, j, k = index ts = np.flatnonzero(self.qual_hist[:, i, j, k]) if len(ts) < 3: return ori = Rotation.from_quat([self.rot_hist[t, :, i, j, k] for t in ts]) pos = np.array([i, j, k], dtype=np.float64) width = self.width_hist[ts, i, j, k].mean() qual = self.qual_hist[ts, i, j, k].mean() return Grasp(Transform(ori.mean(), pos), width, qual) def transform_and_reject(self, grasps): result = [] for grasp in grasps: pose = self.T_base_task * grasp.pose tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation if self.bbox.is_inside(tip): grasp.pose = pose result.append(grasp) return result registry = {} def register(id, cls): global registry registry[id] = cls def make(id, *args, **kwargs): if id in registry: return registry[id](*args, **kwargs) else: raise ValueError("{} policy does not exist.".format(id))