Fixed multi-view baselines

This commit is contained in:
Michel Breyer 2021-08-25 21:32:47 +02:00
parent 5501c2ae42
commit 9b944c9d36
3 changed files with 74 additions and 23 deletions

View File

@ -2,5 +2,6 @@ from .policy import register
from .baselines import *
register("initial-view", InitialView)
register("front-view", FrontView)
register("top-view", TopView)
register("top-trajectory", TopTrajectory)
register("circular-trajectory", CircularTrajectory)

View File

@ -1,7 +1,8 @@
import numpy as np
import rospy
import scipy.interpolate
from .policy import SingleViewPolicy
from .policy import SingleViewPolicy, MultiViewPolicy
from vgn.utils import look_at
@ -11,22 +12,48 @@ class InitialView(SingleViewPolicy):
super().update(img, extrinsic)
class FrontView(SingleViewPolicy):
def activate(self, bbox):
super().activate(bbox)
l, theta = 0.25, np.deg2rad(30)
eye = np.r_[
self.center[0] - l * np.sin(theta),
self.center[1],
self.center[2] + l * np.cos(theta),
]
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, self.center, up)
class TopView(SingleViewPolicy):
def activate(self, bbox):
super().activate(bbox)
eye = np.r_[self.center[:2], self.center[2] + 0.25]
eye = np.r_[self.center[:2], self.center[2] + 0.3]
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, self.center, up)
class TopTrajectory(MultiViewPolicy):
def activate(self, bbox):
super().activate(bbox)
eye = np.r_[self.center[:2], self.center[2] + 0.3]
up = np.r_[1.0, 0.0, 0.0]
self.target = look_at(eye, self.center, up)
def update(self, img, extrinsic):
self.integrate(img, extrinsic)
if np.linalg.norm(extrinsic.translation - self.target.translation) < 0.01:
self.done = True
else:
return self.target
class CircularTrajectory(MultiViewPolicy):
def __init__(self, rate):
super().__init__(rate)
self.r = 0.1
self.h = 0.3
self.duration = 12.0
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
def activate(self, bbox):
super().activate(bbox)
self.tic = rospy.Time.now()
def update(self, img, extrinsic):
self.integrate(img, extrinsic)
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
if elapsed_time > self.duration:
self.done = True
else:
t = self.m(elapsed_time)
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
up = np.r_[1.0, 0.0, 0.0]
return look_at(eye, self.center, up)

View File

@ -39,6 +39,7 @@ class Policy:
self.tsdf = UniformTSDFVolume(0.3, 40)
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
self.views = []
self.best_grasp = None
self.done = False
@ -65,21 +66,19 @@ class Policy:
return grasps[indices], scores[indices]
def score_fn(self, grasp):
# return grasp.quality
return grasp.pose.translation[2]
return grasp.quality
# return grasp.pose.translation[2]
def update(sekf, img, extrinsic):
raise NotImplementedError
class SingleViewPolicy(Policy):
"""Plan grasps from a single view of the target object."""
def update(self, img, extrinsic):
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.views = [extrinsic.inv()]
self.views.append(extrinsic.inv())
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
@ -93,7 +92,6 @@ class SingleViewPolicy(Policy):
grasps, scores = self.sort_grasps(grasps)
self.vis.grasps(self.base_frame, grasps, scores)
rospy.sleep(1.0)
self.best_grasp = grasps[0] if len(grasps) > 0 else None
self.done = True
@ -101,6 +99,31 @@ class SingleViewPolicy(Policy):
return self.target
class MultiViewPolicy(Policy):
def __init__(self, rate):
super().__init__(rate)
self.preempt = True
def integrate(self, img, extrinsic):
self.views.append(extrinsic.inv())
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
self.vis.path(self.base_frame, self.views)
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
out = self.vgn.predict(tsdf_grid)
grasps = select_grid(voxel_size, out, threshold=0.95)
grasps, scores = self.sort_grasps(grasps)
if len(grasps) > 0:
self.best_grasp = grasps[0]
self.vis.grasps(self.base_frame, grasps, scores)
registry = {}