Fixed multi-view baselines
This commit is contained in:
parent
5501c2ae42
commit
9b944c9d36
@ -2,5 +2,6 @@ from .policy import register
|
|||||||
from .baselines import *
|
from .baselines import *
|
||||||
|
|
||||||
register("initial-view", InitialView)
|
register("initial-view", InitialView)
|
||||||
register("front-view", FrontView)
|
|
||||||
register("top-view", TopView)
|
register("top-view", TopView)
|
||||||
|
register("top-trajectory", TopTrajectory)
|
||||||
|
register("circular-trajectory", CircularTrajectory)
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
import rospy
|
||||||
|
import scipy.interpolate
|
||||||
|
|
||||||
|
from .policy import SingleViewPolicy, MultiViewPolicy
|
||||||
from .policy import SingleViewPolicy
|
|
||||||
from vgn.utils import look_at
|
from vgn.utils import look_at
|
||||||
|
|
||||||
|
|
||||||
@ -11,22 +12,48 @@ class InitialView(SingleViewPolicy):
|
|||||||
super().update(img, extrinsic)
|
super().update(img, extrinsic)
|
||||||
|
|
||||||
|
|
||||||
class FrontView(SingleViewPolicy):
|
|
||||||
def activate(self, bbox):
|
|
||||||
super().activate(bbox)
|
|
||||||
l, theta = 0.25, np.deg2rad(30)
|
|
||||||
eye = np.r_[
|
|
||||||
self.center[0] - l * np.sin(theta),
|
|
||||||
self.center[1],
|
|
||||||
self.center[2] + l * np.cos(theta),
|
|
||||||
]
|
|
||||||
up = np.r_[1.0, 0.0, 0.0]
|
|
||||||
self.target = look_at(eye, self.center, up)
|
|
||||||
|
|
||||||
|
|
||||||
class TopView(SingleViewPolicy):
|
class TopView(SingleViewPolicy):
|
||||||
def activate(self, bbox):
|
def activate(self, bbox):
|
||||||
super().activate(bbox)
|
super().activate(bbox)
|
||||||
eye = np.r_[self.center[:2], self.center[2] + 0.25]
|
eye = np.r_[self.center[:2], self.center[2] + 0.3]
|
||||||
up = np.r_[1.0, 0.0, 0.0]
|
up = np.r_[1.0, 0.0, 0.0]
|
||||||
self.target = look_at(eye, self.center, up)
|
self.target = look_at(eye, self.center, up)
|
||||||
|
|
||||||
|
|
||||||
|
class TopTrajectory(MultiViewPolicy):
|
||||||
|
def activate(self, bbox):
|
||||||
|
super().activate(bbox)
|
||||||
|
eye = np.r_[self.center[:2], self.center[2] + 0.3]
|
||||||
|
up = np.r_[1.0, 0.0, 0.0]
|
||||||
|
self.target = look_at(eye, self.center, up)
|
||||||
|
|
||||||
|
def update(self, img, extrinsic):
|
||||||
|
self.integrate(img, extrinsic)
|
||||||
|
if np.linalg.norm(extrinsic.translation - self.target.translation) < 0.01:
|
||||||
|
self.done = True
|
||||||
|
else:
|
||||||
|
return self.target
|
||||||
|
|
||||||
|
|
||||||
|
class CircularTrajectory(MultiViewPolicy):
|
||||||
|
def __init__(self, rate):
|
||||||
|
super().__init__(rate)
|
||||||
|
self.r = 0.1
|
||||||
|
self.h = 0.3
|
||||||
|
self.duration = 12.0
|
||||||
|
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
|
||||||
|
|
||||||
|
def activate(self, bbox):
|
||||||
|
super().activate(bbox)
|
||||||
|
self.tic = rospy.Time.now()
|
||||||
|
|
||||||
|
def update(self, img, extrinsic):
|
||||||
|
self.integrate(img, extrinsic)
|
||||||
|
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
|
||||||
|
if elapsed_time > self.duration:
|
||||||
|
self.done = True
|
||||||
|
else:
|
||||||
|
t = self.m(elapsed_time)
|
||||||
|
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
|
||||||
|
up = np.r_[1.0, 0.0, 0.0]
|
||||||
|
return look_at(eye, self.center, up)
|
||||||
|
@ -39,6 +39,7 @@ class Policy:
|
|||||||
self.tsdf = UniformTSDFVolume(0.3, 40)
|
self.tsdf = UniformTSDFVolume(0.3, 40)
|
||||||
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
||||||
|
|
||||||
|
self.views = []
|
||||||
self.best_grasp = None
|
self.best_grasp = None
|
||||||
self.done = False
|
self.done = False
|
||||||
|
|
||||||
@ -65,21 +66,19 @@ class Policy:
|
|||||||
return grasps[indices], scores[indices]
|
return grasps[indices], scores[indices]
|
||||||
|
|
||||||
def score_fn(self, grasp):
|
def score_fn(self, grasp):
|
||||||
# return grasp.quality
|
return grasp.quality
|
||||||
return grasp.pose.translation[2]
|
# return grasp.pose.translation[2]
|
||||||
|
|
||||||
def update(sekf, img, extrinsic):
|
def update(sekf, img, extrinsic):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class SingleViewPolicy(Policy):
|
class SingleViewPolicy(Policy):
|
||||||
"""Plan grasps from a single view of the target object."""
|
|
||||||
|
|
||||||
def update(self, img, extrinsic):
|
def update(self, img, extrinsic):
|
||||||
error = extrinsic.translation - self.target.translation
|
error = extrinsic.translation - self.target.translation
|
||||||
|
|
||||||
if np.linalg.norm(error) < 0.01:
|
if np.linalg.norm(error) < 0.01:
|
||||||
self.views = [extrinsic.inv()]
|
self.views.append(extrinsic.inv())
|
||||||
|
|
||||||
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
|
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
|
||||||
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
|
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
|
||||||
@ -93,7 +92,6 @@ class SingleViewPolicy(Policy):
|
|||||||
grasps, scores = self.sort_grasps(grasps)
|
grasps, scores = self.sort_grasps(grasps)
|
||||||
|
|
||||||
self.vis.grasps(self.base_frame, grasps, scores)
|
self.vis.grasps(self.base_frame, grasps, scores)
|
||||||
rospy.sleep(1.0)
|
|
||||||
|
|
||||||
self.best_grasp = grasps[0] if len(grasps) > 0 else None
|
self.best_grasp = grasps[0] if len(grasps) > 0 else None
|
||||||
self.done = True
|
self.done = True
|
||||||
@ -101,6 +99,31 @@ class SingleViewPolicy(Policy):
|
|||||||
return self.target
|
return self.target
|
||||||
|
|
||||||
|
|
||||||
|
class MultiViewPolicy(Policy):
|
||||||
|
def __init__(self, rate):
|
||||||
|
super().__init__(rate)
|
||||||
|
self.preempt = True
|
||||||
|
|
||||||
|
def integrate(self, img, extrinsic):
|
||||||
|
self.views.append(extrinsic.inv())
|
||||||
|
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
|
||||||
|
|
||||||
|
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
||||||
|
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
|
||||||
|
self.vis.path(self.base_frame, self.views)
|
||||||
|
|
||||||
|
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
|
||||||
|
out = self.vgn.predict(tsdf_grid)
|
||||||
|
|
||||||
|
grasps = select_grid(voxel_size, out, threshold=0.95)
|
||||||
|
grasps, scores = self.sort_grasps(grasps)
|
||||||
|
|
||||||
|
if len(grasps) > 0:
|
||||||
|
self.best_grasp = grasps[0]
|
||||||
|
|
||||||
|
self.vis.grasps(self.base_frame, grasps, scores)
|
||||||
|
|
||||||
|
|
||||||
registry = {}
|
registry = {}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user