Compute mean over recent grasp predictions

This commit is contained in:
Michel Breyer 2021-08-09 15:19:17 +02:00
parent 4eeb309a8f
commit 0beca41c39
2 changed files with 63 additions and 13 deletions

View File

@ -2,11 +2,12 @@ import numpy as np
from sensor_msgs.msg import CameraInfo
from pathlib import Path
import rospy
import warnings
from .visualization import Visualizer
from robot_helpers.ros import tf
from robot_helpers.ros.conversions import *
from vgn.detection import VGN, compute_grasps
from vgn.detection import *
from vgn.perception import UniformTSDFVolume
from vgn.utils import *
@ -20,8 +21,9 @@ class Policy:
class BasePolicy(Policy):
def __init__(self, rate=5):
def __init__(self, rate=5, filter_grasps=False):
self.rate = rate
self.filter_grasps = filter_grasps
self.load_parameters()
self.init_visualizer()
@ -32,6 +34,7 @@ class BasePolicy(Policy):
msg = rospy.wait_for_message(info_topic, CameraInfo, rospy.Duration(2.0))
self.intrinsic = from_camera_info_msg(msg)
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
self.score_fn = lambda g: g.pose.translation[2]
def init_visualizer(self):
self.visualizer = Visualizer(self.base_frame)
@ -45,7 +48,15 @@ class BasePolicy(Policy):
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
rospy.sleep(0.1) # wait for the transform to be published
self.tsdf = UniformTSDFVolume(0.3, 40)
N, self.T = 40, 10 # spatial and temporal resolution
grid_shape = (N,) * 3
self.tsdf = UniformTSDFVolume(0.3, N)
self.qual_hist = np.zeros((self.T,) + grid_shape, np.float32)
self.rot_hist = np.zeros((self.T, 4) + grid_shape, np.float32)
self.width_hist = np.zeros((self.T,) + grid_shape, np.float32)
self.viewpoints = []
self.done = False
self.best_grasp = None
@ -59,16 +70,48 @@ class BasePolicy(Policy):
self.visualizer.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
self.visualizer.path(self.viewpoints)
def compute_best_grasp(self):
return self.predict_best_grasp()
if self.filter_grasps:
tsdf_grid = self.tsdf.get_grid()
out = self.vgn.predict(tsdf_grid)
t = (len(self.viewpoints) - 1) % self.T
self.qual_hist[t, ...] = out.qual
self.rot_hist[t, ...] = out.rot
self.width_hist[t, ...] = out.width
def predict_best_grasp(self):
tsdf_grid = self.tsdf.get_grid()
out = self.vgn.predict(tsdf_grid)
score_fn = lambda g: g.pose.translation[2]
grasps = compute_grasps(self.tsdf.voxel_size, out, score_fn, max_filter_size=3)
def compute_best_grasp(self):
if self.filter_grasps:
T = len(self.viewpoints) if len(self.viewpoints) // self.T == 0 else self.T
mask = self.qual_hist[:T, ...] > 0.0
# The next line prints a warning since some voxels have no grasp
# predictions resulting in empty slices.
qual = np.mean(self.qual_hist[:T, ...], axis=0, where=mask)
qual = threshold_quality(qual, 0.9)
index_list = select_local_maxima(qual, 3)
grasps = []
for (i, j, k) in index_list:
ts = np.flatnonzero(self.qual_hist[:T, i, j, k])
if len(ts) < 3:
continue
oris = Rotation.from_quat([self.rot_hist[t, :, i, j, k] for t in ts])
ori = oris.mean()
# TODO check variance as well
pos = np.array([i, j, k], dtype=np.float64)
width = self.width_hist[ts, i, j, k].mean()
quality = self.qual_hist[ts, i, j, k].mean()
grasps.append(Grasp(Transform(ori, pos), width, quality))
else:
tsdf_grid = self.tsdf.get_grid()
out = self.vgn.predict(tsdf_grid)
qual = threshold_quality(out.qual, 0.9)
index_list = select_local_maxima(qual, 3)
grasps = [select_at(out, i) for i in index_list]
grasps = [from_voxel_coordinates(g, self.tsdf.voxel_size) for g in grasps]
grasps = self.transform_grasps_to_base_frame(grasps)
grasps = self.select_grasps_on_target_object(grasps)
grasps = sort_grasps(grasps, self.score_fn)
return grasps[0] if len(grasps) > 0 else None
def transform_grasps_to_base_frame(self, grasps):

View File

@ -16,7 +16,7 @@ def main():
parser = create_parser()
args = parser.parse_args()
policy = make(args.policy, args.rate)
policy = make(args.policy, args.rate, args.filter_grasps)
controller = GraspController(policy)
logger = Logger(args)
@ -33,6 +33,7 @@ def create_parser():
parser.add_argument("--runs", type=int, default=10)
parser.add_argument("--logdir", type=Path, default="logs")
parser.add_argument("--rate", type=int, default=5)
parser.add_argument("--filter-grasps", action="store_true")
parser.add_argument("--seed", type=int, default=12)
return parser
@ -40,8 +41,14 @@ def create_parser():
class Logger:
def __init__(self, args):
stamp = datetime.now().strftime("%y%m%d-%H%M%S")
descr = "policy={},rate={}".format(args.policy, args.rate)
self.path = args.logdir / (stamp + "_" + descr + ".csv")
name = "{}_policy={},rate={},filter-grasps={},seed={}.csv".format(
stamp,
args.policy,
args.rate,
args.filter_grasps,
args.seed,
)
self.path = args.logdir / name
def log_run(self, info):
df = pd.DataFrame.from_records([info])