2024-08-22 22:28:20 +08:00

89 lines
3.6 KiB
Python

import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.stereotype as stereotype
from utils.data_load import DataLoadUtil
@stereotype.dataset("nbv_reconstruction_dataset")
class NBVReconstructionDataset(BaseDataset):
def __init__(self, config):
super(NBVReconstructionDataset, self).__init__(config)
self.config = config
self.label_dir = config["label_dir"]
self.root_dir = config["root_dir"]
self.datalist = self.get_datalist()
def get_datalist(self):
datalist = []
scene_idx_list = DataLoadUtil.get_scene_idx_list(self.root_dir)
for scene_idx in scene_idx_list:
label_path = DataLoadUtil.get_label_path(self.label_dir, scene_idx)
label_data = DataLoadUtil.load_label(label_path)
for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0]
next_best_view = data_pair[1]
max_coverage_rate = label_data["max_coverage_rate"]
datalist.append(
{
"scanned_views": scanned_views,
"next_best_view": next_best_view,
"max_coverage_rate": max_coverage_rate,
"scene_idx": scene_idx,
}
)
return datalist
def __getitem__(self, index):
data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"]
nbv = data_item_info["next_best_view"]
max_coverage_rate = data_item_info["max_coverage_rate"]
scene_idx = data_item_info["scene_idx"]
scanned_views_pts, scanned_coverages_rate, scanned_cam_pose = [], [], []
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
view_path = DataLoadUtil.get_path(self.root_dir, scene_idx, frame_idx)
pts = DataLoadUtil.load_depth(view_path)
scanned_views_pts.append(pts)
scanned_coverages_rate.append(coverage_rate)
cam_pose = DataLoadUtil.load_cam_info(view_path)["cam_to_world"]
scanned_cam_pose.append(cam_pose)
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_idx, nbv_idx)
nbv_pts = DataLoadUtil.load_depth(nbv_path)
cam_info = DataLoadUtil.load_cam_info(nbv_path)
nbv_cam_pose = cam_info["cam_to_world"]
data_item = {
"scanned_views_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"scanned_coverages_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
"scanned_cam_pose": np.asarray(scanned_cam_pose,dtype=np.float32),
"nbv_pts": np.asarray(nbv_pts,dtype=np.float32),
"nbv_coverage_rate": nbv_coverage_rate,
"nbv_cam_pose": nbv_cam_pose,
"max_coverage_rate": max_coverage_rate,
}
return data_item
def __len__(self):
return len(self.datalist)
if __name__ == "__main__":
import torch
config = {
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_dataset",
"label_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_output",
"ratio": 0.1,
"batch_size": 1,
"num_workers": 0,
}
ds = NBVReconstructionDataset(config)
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
for key, value in data.items():
if isinstance(value, torch.Tensor):
print(key, ":" ,value.shape)
print()