nbv_reconstruction/modules/transformer_seq_encoder.py
2024-08-23 13:05:14 +08:00

63 lines
2.8 KiB
Python

import torch
from torch import nn
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_seq_encoder")
class TransformerSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerSequenceEncoder, self).__init__()
self.config = config
embed_dim = config['pts_embed_dim'] + config['pose_embed_dim']
self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim))
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim'])
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
self.fc = nn.Linear(embed_dim, config['output_dim'])
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
batch_size = len(pts_embedding_list_batch)
combined_features_batch = []
for i in range(batch_size):
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
combined_features_batch.append(torch.stack(combined_features))
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
# Adjust positional encoding to match batch size
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
combined_tensor = combined_tensor + pos_encoding
# Transformer encoding
transformer_output = self.transformer_encoder(combined_tensor)
# Mean pooling
final_feature = transformer_output.mean(dim=1)
# Fully connected layer
final_output = self.fc(final_feature)
return final_output
if __name__ == "__main__":
config = {
'pts_embed_dim': 1024, # 每个点云embedding的维度
'pose_embed_dim': 256, # 每个姿态embedding的维度
'num_heads': 4, # 多头注意力机制的头数
'ffn_dim': 256, # 前馈神经网络的维度
'num_layers': 3, # Transformer 编码层数
'max_seq_len': 10, # 最大序列长度
'output_dim': 2048, # 输出特征维度
}
encoder = TransformerSequenceEncoder(config)
seq_len = 5
batch_size = 4
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)