nbv_reconstruction/core/pipeline.py
2024-10-29 16:54:42 +00:00

117 lines
4.3 KiB
Python

import torch
import time
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_pipeline")
class NBVReconstructionPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pts_encoder"]
)
self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
)
self.seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
)
self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"]
)
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
return self.forward_test(data)
else:
Log.error("Unknown mode: {}".format(mode), True)
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
random_t = (
torch.rand(bs, device=gt_delta_9d.device) * (1.0 - self.eps) + self.eps
)
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
target_score = -z * std / (std**2)
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
start_time = time.time()
main_feat = self.get_main_feat(data)
end_time = time.time()
print("get_main_feat time: ", end_time - start_time)
""" get std """
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(
best_to_world_pose_9d_batch
)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
"estimated_score": estimated_score,
"target_score": target_score,
"std": std,
}
return output
def forward_test(self, data):
main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
main_feat
)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample,
}
return result
def get_main_feat(self, data):
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device
embedding_list_batch = []
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = seq_feat # Tensor(B x Ds)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat