nbv_reconstruction/runners/inferencer.py

265 lines
13 KiB
Python

import os
import json
from utils.render import RenderUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
import torch
from tqdm import tqdm
import numpy as np
import pickle
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from PytorchBoot.status import status_manager
@stereotype.runner("inferencer")
class Inferencer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.stat_result = {}
''' Test '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
self.inference()
Log.success("Inference finished.")
def inference(self):
self.pipeline.eval()
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name()
test_loader = test_set.get_loader()
if test_loader.batch_size > 1:
Log.error("Batch size should be 1 for inference, found {} in {}".format(test_loader.batch_size, test_set_name), terminate=True)
total=int(len(test_loader))
loop = tqdm(enumerate(test_loader), total=total)
for i, data in loop:
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
test_set.process_batch(data, self.device)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"][0], output)
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def predict_sequence(self, data, cr_increase_threshold=0, max_iter=50, max_retry=5):
scene_name = data["scene_name"][0]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
''' data for rendering '''
scene_path = data["scene_path"][0]
O_to_L_pose = data["O_to_L_pose"][0]
voxel_threshold = data["voxel_threshold"][0]
filter_degree = data["filter_degree"][0]
model_points_normals = data["model_points_normals"][0]
model_pts = model_points_normals[:,:3]
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
first_frame_to_world_9d = data["first_to_world_9d"][0]
first_frame_to_world = torch.eye(4, device=first_frame_to_world_9d.device)
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(first_frame_to_world_9d[:,:6])[0]
first_frame_to_world[:3,3] = first_frame_to_world_9d[0,6:]
first_frame_to_world = first_frame_to_world.to(self.device)
''' data for inference '''
input_data = {}
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_world_9d"][0].to(self.device)]
input_data["mode"] = namespace.Mode.TEST
input_data["combined_scanned_pts"] = data["combined_scanned_pts"]
input_pts_N = input_data["scanned_pts"][0].shape[1]
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts]
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
retry_duplication_pose = []
retry_no_pts_pose = []
retry = 0
pred_cr_seq = [last_pred_cr]
while len(pred_cr_seq) < max_iter and retry < max_retry:
output = self.pipeline(input_data)
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
new_target_pts_world, new_pts_world = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose, require_full_scene=True)
except Exception as e:
Log.warning(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_target_pts_world, down_sampled_model_pts, threshold=voxel_threshold)
print(pred_cr, last_pred_cr, " max: ", data["max_coverage_rate"])
if pred_cr >= data["max_coverage_rate"]:
print("max coverage rate reached!")
if pred_cr <= last_pred_cr + cr_increase_threshold:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
continue
retry = 0
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts_world)
down_sampled_new_pts_world = PtsUtil.random_downsample_point_cloud(new_pts_world, input_pts_N)
new_pts_world_aug = np.hstack([down_sampled_new_pts_world, np.ones((down_sampled_new_pts_world.shape[0], 1))])
new_pts = np.dot(np.linalg.inv(first_frame_to_world.cpu()), new_pts_world_aug.T).T[:,:3]
new_pts_tensor = torch.tensor(new_pts, dtype=torch.float32).unsqueeze(0).to(self.device)
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0] , new_pts_tensor], dim=0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_views_pts = np.concatenate(input_data["scanned_pts"][0].tolist(), axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
last_pred_cr = pred_cr
input_data["scanned_pts"] = input_data["scanned_pts"][0].cpu().numpy().tolist()
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"pts_seq": input_data["scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["max_coverage_rate"][0],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"best_seq_len": data["best_seq_len"][0],
}
self.stat_result[scene_name] = {
"max_coverage_rate": data["max_coverage_rate"][0],
"success_rate": max(pred_cr_seq)/ data["max_coverage_rate"][0],
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq) / data["max_coverage_rate"][0])
return result
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
def save_inference_result(self, dataset_name, scene_name, output):
dataset_dir = os.path.join(self.output_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
pickle.dump(output, open(output_path, "wb"))
with open(os.path.join(dataset_dir, "stat.json"), "w") as f:
json.dump(self.stat_result, f)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')