nbv_reconstruction/core/evaluation.py
2024-09-18 06:49:59 +00:00

137 lines
6.8 KiB
Python

import torch
import os
import json
import numpy as np
import subprocess
import tempfile
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
import PytorchBoot.stereotype as stereotype
import PytorchBoot.namespace as namespace
from PytorchBoot.utils.log_util import Log
def render_pts(cam_pose, scene_path,script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None):
nO_to_world_pose = cam_pose.cpu().numpy() @ nO_to_nL_pose
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
with tempfile.TemporaryDirectory() as temp_dir:
params = {
"cam_pose": nO_to_world_pose.tolist(),
"scene_path": scene_path
}
params_data_path = os.path.join(temp_dir, "params.json")
with open(params_data_path, 'w') as f:
json.dump(params, f)
result = subprocess.run([
'blender', '-b', '-P', script_path, '--', temp_dir
], capture_output=True, text=True)
if result.returncode != 0:
print("Blender script failed:")
print(result.stderr)
return None
path = os.path.join(temp_dir, "tmp")
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
return sampled_point_cloud
@stereotype.evaluation_method("pose_diff")
class PoseDiff:
def __init__(self, _):
pass
def evaluate(self, output_list, data_list):
results = {namespace.TensorBoard.SCALAR: {}}
rot_angle_list = []
trans_dist_list = []
for output, data in zip(output_list, data_list):
gt_pose_9d = data['best_to_1_pose_9d']
pred_pose_9d = output['pred_pose_9d']
gt_rot_6d = gt_pose_9d[:, :6]
gt_trans = gt_pose_9d[:, 6:]
pred_rot_6d = pred_pose_9d[:, :6]
pred_trans = pred_pose_9d[:, 6:]
gt_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(gt_rot_6d)
pred_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_rot_6d)
rotation_angles = PoseUtil.rotation_angle_distance(gt_rot_mat, pred_rot_mat)
rot_angle_list.extend(list(rotation_angles))
trans_dist = torch.norm(gt_trans-pred_trans)
trans_dist_list.append(trans_dist)
results[namespace.TensorBoard.SCALAR]["rot_diff"] = float(sum(rot_angle_list) / len(rot_angle_list))
results[namespace.TensorBoard.SCALAR]["trans_diff"] = float(sum(trans_dist_list) / len(trans_dist_list))
return results
@stereotype.evaluation_method("coverage_rate_increase")
class ConverageRateIncrease:
def __init__(self, config):
self.config = config
self.renderer_path = config["renderer_path"]
def evaluate(self, output_list, data_list):
results = {namespace.TensorBoard.SCALAR: {}}
gt_coverate_increase_list = []
pred_coverate_increase_list = []
cr_diff_list = []
for output, data in zip(output_list, data_list):
scanned_cr = data['scanned_coverage_rate']
gt_cr = data["best_coverage_rate"]
scene_path_list = data['scene_path']
model_points_normals_list = data['model_points_normals']
scanned_view_pts_list = data['scanned_target_pts_list']
pred_pose_9ds = output['pred_pose_9d']
nO_to_nL_pose_batch = data["nO_to_nL_pose"]
voxel_threshold_list = data["voxel_threshold"]
filter_degree_list = data["filter_degree"]
first_frame_to_world = data["first_frame_to_world"]
pred_n_to_1_pose_mats = torch.eye(4, device=pred_pose_9ds.device).unsqueeze(0).repeat(pred_pose_9ds.shape[0], 1, 1)
pred_n_to_1_pose_mats[:,:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9ds[:, :6])
pred_n_to_1_pose_mats[:,:3,3] = pred_pose_9ds[:, 6:]
pred_n_to_world_pose_mats = torch.matmul(first_frame_to_world, pred_n_to_1_pose_mats)
for idx in range(len(scanned_cr)):
model_points_normals = model_points_normals_list[idx]
scanned_view_pts = scanned_view_pts_list[idx]
voxel_threshold = voxel_threshold_list[idx]
model_pts = model_points_normals[:,:3]
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
old_scanned_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
gt_coverate_increase_list.append(gt_cr[idx]-old_scanned_cr)
scene_path = scene_path_list[idx]
pred_pose = pred_n_to_world_pose_mats[idx]
filter_degree = filter_degree_list[idx]
nO_to_nL_pose = nO_to_nL_pose_batch[idx]
try:
new_pts = render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_pts, down_sampled_model_pts, threshold=voxel_threshold)
except Exception as e:
Log.warning(f"Error in scene {scene_path}, {e}")
pred_cr = old_scanned_cr
pred_coverate_increase_list.append(pred_cr-old_scanned_cr)
cr_diff_list.append(gt_cr[idx]-pred_cr)
results[namespace.TensorBoard.SCALAR]["gt_cr_increase"] = float(sum(gt_coverate_increase_list) / len(gt_coverate_increase_list))
results[namespace.TensorBoard.SCALAR]["pred_cr_increase"] = float(sum(pred_coverate_increase_list) / len(pred_coverate_increase_list))
results[namespace.TensorBoard.SCALAR]["cr_diff"] = float(sum(cr_diff_list) / len(cr_diff_list))
return results
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)