336 lines
17 KiB
Python
336 lines
17 KiB
Python
import os
|
|
import json
|
|
from utils.render import RenderUtil
|
|
from utils.pose import PoseUtil
|
|
from utils.pts import PtsUtil
|
|
from utils.reconstruction import ReconstructionUtil
|
|
from beans.predict_result import PredictResult
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import pickle
|
|
|
|
from PytorchBoot.config import ConfigManager
|
|
import PytorchBoot.namespace as namespace
|
|
import PytorchBoot.stereotype as stereotype
|
|
from PytorchBoot.factory import ComponentFactory
|
|
|
|
from PytorchBoot.dataset import BaseDataset
|
|
from PytorchBoot.runners.runner import Runner
|
|
from PytorchBoot.utils import Log
|
|
from PytorchBoot.status import status_manager
|
|
from utils.data_load import DataLoadUtil
|
|
@stereotype.runner("inferencer")
|
|
class Inferencer(Runner):
|
|
def __init__(self, config_path):
|
|
|
|
super().__init__(config_path)
|
|
|
|
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
|
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
|
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
|
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
|
|
CM = 0.01
|
|
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
|
|
''' Pipeline '''
|
|
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
|
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
|
self.pipeline = self.pipeline.to(self.device)
|
|
|
|
''' Experiment '''
|
|
self.load_experiment("nbv_evaluator")
|
|
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
|
|
if os.path.exists(self.stat_result_path):
|
|
with open(self.stat_result_path, "r") as f:
|
|
self.stat_result = json.load(f)
|
|
else:
|
|
self.stat_result = {}
|
|
|
|
''' Test '''
|
|
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
|
self.test_dataset_name_list = self.test_config["dataset_list"]
|
|
self.test_set_list = []
|
|
self.test_writer_list = []
|
|
seen_name = set()
|
|
for test_dataset_name in self.test_dataset_name_list:
|
|
if test_dataset_name not in seen_name:
|
|
seen_name.add(test_dataset_name)
|
|
else:
|
|
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
|
|
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
|
|
self.test_set_list.append(test_set)
|
|
self.print_info()
|
|
|
|
|
|
def run(self):
|
|
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
|
self.inference()
|
|
Log.success("Inference finished.")
|
|
|
|
|
|
def inference(self):
|
|
self.pipeline.eval()
|
|
with torch.no_grad():
|
|
test_set: BaseDataset
|
|
for dataset_idx, test_set in enumerate(self.test_set_list):
|
|
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
|
test_set_name = test_set.get_name()
|
|
|
|
total=int(len(test_set))
|
|
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
|
|
try:
|
|
data = test_set.__getitem__(i)
|
|
scene_name = data["scene_name"]
|
|
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
|
|
|
if os.path.exists(inference_result_path):
|
|
Log.info(f"Inference result already exists for scene: {scene_name}")
|
|
continue
|
|
|
|
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
|
output = self.predict_sequence(data)
|
|
self.save_inference_result(test_set_name, data["scene_name"], output)
|
|
except Exception as e:
|
|
Log.error(f"Error in scene {scene_name}, {e}")
|
|
continue
|
|
|
|
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
|
|
|
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
|
|
scene_name = data["scene_name"]
|
|
Log.info(f"Processing scene: {scene_name}")
|
|
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
|
|
|
''' data for rendering '''
|
|
scene_path = data["scene_path"]
|
|
O_to_L_pose = data["O_to_L_pose"]
|
|
voxel_threshold = self.voxel_size
|
|
filter_degree = 75
|
|
down_sampled_model_pts = data["gt_pts"]
|
|
|
|
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
|
|
first_frame_to_world = np.eye(4)
|
|
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
|
|
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
|
|
|
|
''' data for inference '''
|
|
input_data = {}
|
|
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
|
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
|
input_data["mode"] = namespace.Mode.TEST
|
|
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
|
|
|
root = os.path.dirname(scene_path)
|
|
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
|
|
radius = display_table_info["radius"]
|
|
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
|
|
|
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
|
scanned_view_pts = [first_frame_target_pts]
|
|
history_indices = [first_frame_scan_points_indices]
|
|
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
|
retry_duplication_pose = []
|
|
retry_no_pts_pose = []
|
|
retry_overlap_pose = []
|
|
retry = 0
|
|
pred_cr_seq = [last_pred_cr]
|
|
success = 0
|
|
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
|
#import time
|
|
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
|
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
|
output = self.pipeline(input_data)
|
|
pred_pose_9d = output["pred_pose_9d"]
|
|
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
|
# # save pred_pose_9d ------
|
|
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
|
|
# scene_dir = os.path.join(root, scene_name)
|
|
# if not os.path.exists(scene_dir):
|
|
# os.makedirs(scene_dir)
|
|
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
|
|
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
|
|
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
|
|
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
|
|
# np.savetxt(pts_path, np_combined_scanned_pts)
|
|
# # ----- ----- -----
|
|
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
|
|
# -----------------------
|
|
# import ipdb; ipdb.set_trace()
|
|
# predict_result.visualize()
|
|
# -----------------------
|
|
pred_pose_9d_candidates = predict_result.candidate_9d_poses
|
|
for pred_pose_9d in pred_pose_9d_candidates:
|
|
#import ipdb; ipdb.set_trace()
|
|
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
|
|
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
|
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
|
try:
|
|
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
|
#import ipdb; ipdb.set_trace()
|
|
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
|
curr_overlap_area_threshold = overlap_area_threshold
|
|
else:
|
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
|
|
|
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
|
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
|
if not overlap:
|
|
Log.yellow("no overlap!")
|
|
retry += 1
|
|
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
|
continue
|
|
|
|
history_indices.append(new_scan_points_indices)
|
|
except Exception as e:
|
|
Log.error(f"Error in scene {scene_path}, {e}")
|
|
print("current pose: ", pred_pose)
|
|
print("curr_pred_cr: ", last_pred_cr)
|
|
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
|
retry += 1
|
|
continue
|
|
|
|
if new_target_pts.shape[0] == 0:
|
|
Log.red("no pts in new target")
|
|
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
|
retry += 1
|
|
continue
|
|
|
|
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
|
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
|
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
|
print("max coverage rate reached!: ", pred_cr)
|
|
|
|
|
|
|
|
pred_cr_seq.append(pred_cr)
|
|
scanned_view_pts.append(new_target_pts)
|
|
|
|
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
|
|
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
|
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
|
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
|
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
|
|
|
|
|
last_pred_cr = pred_cr
|
|
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
|
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
|
|
|
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
|
retry += 1
|
|
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
|
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
|
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
|
success += 1
|
|
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
|
|
|
last_pts_num = pts_num
|
|
|
|
|
|
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
|
result = {
|
|
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
|
|
"combined_scanned_pts": input_data["combined_scanned_pts"],
|
|
"target_pts_seq": scanned_view_pts,
|
|
"coverage_rate_seq": pred_cr_seq,
|
|
"max_coverage_rate": data["seq_max_coverage_rate"],
|
|
"pred_max_coverage_rate": max(pred_cr_seq),
|
|
"scene_name": scene_name,
|
|
"retry_no_pts_pose": retry_no_pts_pose,
|
|
"retry_duplication_pose": retry_duplication_pose,
|
|
"retry_overlap_pose": retry_overlap_pose,
|
|
"best_seq_len": data["best_seq_len"],
|
|
}
|
|
self.stat_result[scene_name] = {
|
|
"coverage_rate_seq": pred_cr_seq,
|
|
"pred_max_coverage_rate": max(pred_cr_seq),
|
|
"pred_seq_len": len(pred_cr_seq),
|
|
}
|
|
print('success rate: ', max(pred_cr_seq))
|
|
|
|
return result
|
|
|
|
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
|
if new_pts is not None:
|
|
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
|
else:
|
|
new_scanned_view_pts = scanned_view_pts
|
|
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
|
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
|
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
|
|
|
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
|
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
|
idx_sort = np.argsort(inverse)
|
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
|
downsampled_points = point_cloud[idx_unique]
|
|
return downsampled_points, inverse
|
|
|
|
def save_inference_result(self, dataset_name, scene_name, output):
|
|
dataset_dir = os.path.join(self.output_dir, dataset_name)
|
|
if not os.path.exists(dataset_dir):
|
|
os.makedirs(dataset_dir)
|
|
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
|
pickle.dump(output, open(output_path, "wb"))
|
|
with open(self.stat_result_path, "w") as f:
|
|
json.dump(self.stat_result, f)
|
|
|
|
|
|
def get_checkpoint_path(self, is_last=False):
|
|
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
|
|
"Epoch_{}.pth".format(
|
|
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
|
|
|
|
def load_checkpoint(self, is_last=False):
|
|
self.load(self.get_checkpoint_path(is_last))
|
|
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
|
|
if is_last:
|
|
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
|
|
meta_path = os.path.join(checkpoint_root, "meta.json")
|
|
if not os.path.exists(meta_path):
|
|
raise FileNotFoundError(
|
|
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
|
|
file_path = os.path.join(checkpoint_root, "meta.json")
|
|
with open(file_path, "r") as f:
|
|
meta = json.load(f)
|
|
self.current_epoch = meta["last_epoch"]
|
|
self.current_iter = meta["last_iter"]
|
|
|
|
def load_experiment(self, backup_name=None):
|
|
super().load_experiment(backup_name)
|
|
self.current_epoch = self.experiments_config["epoch"]
|
|
self.load_checkpoint(is_last=(self.current_epoch == -1))
|
|
|
|
def create_experiment(self, backup_name=None):
|
|
super().create_experiment(backup_name)
|
|
|
|
|
|
def load(self, path):
|
|
state_dict = torch.load(path)
|
|
self.pipeline.load_state_dict(state_dict)
|
|
|
|
def print_info(self):
|
|
def print_dataset(dataset: BaseDataset):
|
|
config = dataset.get_config()
|
|
name = dataset.get_name()
|
|
Log.blue(f"Dataset: {name}")
|
|
for k,v in config.items():
|
|
Log.blue(f"\t{k}: {v}")
|
|
|
|
super().print_info()
|
|
table_size = 70
|
|
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
|
|
Log.blue(self.pipeline)
|
|
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
|
|
for i, test_set in enumerate(self.test_set_list):
|
|
Log.blue(f"test dataset {i}: ")
|
|
print_dataset(test_set)
|
|
|
|
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
|
|
|