import os from PytorchBoot.runners.runner import Runner from PytorchBoot.config import ConfigManager import PytorchBoot.stereotype as stereotype @stereotype.runner("strategy_generator") class StrategyGenerator(Runner): def __init__(self, config): super().__init__(config) self.load_experiment("generate") def run(self): self.demo(seq=16,num=100) def create_experiment(self, backup_name=None): super().create_experiment(backup_name) output_dir = os.path.join(str(self.experiment_path), "output") os.makedirs(output_dir) def load_experiment(self, backup_name=None): super().load_experiment(backup_name) def demo(self, seq, num=100): import os from utils.data_load import DataLoadUtil from utils.reconstruction import ReconstructionUtil import numpy as np component = self.config["generate"][0]["component"] #r"C:\Document\Local Project\nbv_rec\output" data_dir = ConfigManager.get("datasets", "components", component, "root_dir") model_path = os.path.join(data_dir, f"sequence.{seq}\\world_points.txt") model_pts = np.loadtxt(model_path) output_dir = os.path.join(str(self.experiment_path), "output") pts_list = [] for idx in range(0,num): path = DataLoadUtil.get_path(data_dir, seq, idx) point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path) sampled_point_cloud = ReconstructionUtil.downsample_point_cloud(point_cloud, 0.005) pts_list.append(sampled_point_cloud) sampled_model_pts = ReconstructionUtil.downsample_point_cloud(model_pts, 0.005) np.savetxt(os.path.join(output_dir,"sampled_model_points.txt"), sampled_model_pts) thre = 0.005 useful_view, useless_view = ReconstructionUtil.compute_next_best_view_sequence(model_pts, pts_list, threshold=thre) print("useful:", useful_view) print("useless:", useless_view) selected_full_views = ReconstructionUtil.combine_point_with_view_sequence(pts_list, useful_view) downsampled_selected_full_views = ReconstructionUtil.downsample_point_cloud(selected_full_views, thre) np.savetxt(os.path.join(output_dir,"selected_full_views.txt"), downsampled_selected_full_views) limited_useful_view, limited_useless_view = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(model_pts, pts_list, threshold=thre, overlap_threshold=0.3) print("limited_useful:", limited_useful_view) print("limited_useless:", limited_useless_view) limited_selected_full_views = ReconstructionUtil.combine_point_with_view_sequence(pts_list, limited_useful_view) downsampled_limited_selected_full_views = ReconstructionUtil.downsample_point_cloud(limited_selected_full_views, thre) np.savetxt(os.path.join(output_dir,"selected_full_views_limited.txt"), downsampled_limited_selected_full_views) import json for idx, score in limited_useful_view: path = DataLoadUtil.get_path(data_dir, seq, idx) point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path) print("saving useful view: ", idx, " | score: ", score) np.savetxt(os.path.join(output_dir,f"useful_view_{idx}.txt"), point_cloud) with open(os.path.join(output_dir,f"useful_view.json"), 'w') as f: json.dump(limited_useful_view, f) print("seq length: ", len(useful_view), "limited seq length: ", len(limited_useful_view))