import torch from torch import nn import PytorchBoot.stereotype as stereotype import sys; sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction") from modules.seq_encoder.abstract_seq_encoder import SequenceEncoder @stereotype.module("transformer_seq_encoder") class TransformerSequenceEncoder(SequenceEncoder): def __init__(self, config): super(TransformerSequenceEncoder, self).__init__() self.config = config embed_dim = config['pts_embed_dim'] + config['pose_embed_dim'] self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim)) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim']) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers']) self.fc = nn.Linear(embed_dim, config['output_dim']) def encode_sequence(self, pts_embedding_list, pose_embedding_list): combined_features = [torch.cat((pts_embed, pose_embed), dim=-1) for pts_embed, pose_embed in zip(pts_embedding_list[:-1], pose_embedding_list[:-1])] combined_tensor = torch.stack(combined_features) pos_encoding = self.positional_encoding[:, :combined_tensor.size(0), :] combined_tensor = combined_tensor.unsqueeze(0) + pos_encoding transformer_output = self.transformer_encoder(combined_tensor).squeeze(0) final_feature = transformer_output.mean(dim=0) final_output = self.fc(final_feature) return final_output if __name__ == "__main__": config = { 'pts_embed_dim': 1024, # 每个点云embedding的维度 'pose_embed_dim': 256, # 每个姿态embedding的维度 'num_heads': 4, # 多头注意力机制的头数 'ffn_dim': 256, # 前馈神经网络的维度 'num_layers': 3, # Transformer 编码层数 'max_seq_len': 10, # 最大序列长度 'output_dim': 2048, # 输出特征维度 } encoder = TransformerSequenceEncoder(config) seq_len = 5 pts_embedding_list = [torch.randn(config['pts_embed_dim']) for _ in range(seq_len)] pose_embedding_list = [torch.randn(config['pose_embed_dim']) for _ in range(seq_len)] output_feature = encoder.encode_sequence(pts_embedding_list, pose_embedding_list) print("Encoded Feature:", output_feature) print("Feature Shape:", output_feature.shape)