import os import OpenEXR import Imath import numpy as np import json import cv2 import re class DataLoadUtil: @staticmethod def get_path(root, scene_idx, frame_idx): path = os.path.join(root, f"sequence.{scene_idx}", f"step{frame_idx}") return path @staticmethod def get_label_path(root, scene_idx): path = os.path.join(root, f"sequence.{scene_idx}_label.json") return path @staticmethod def get_scene_idx_list(root): scene_dir = os.listdir(root) scene_idx_list = [] for scene in scene_dir: if "sequence" in scene: scene_idx = int(re.search(r'\d+', scene).group()) scene_idx_list.append(scene_idx) return scene_idx_list @staticmethod def get_frame_idx_list(root, scene_idx): scene_path = os.path.join(root, f"sequence.{scene_idx}") view_dir = os.listdir(scene_path) seen_frame_idx = set() for view in view_dir: if "step" in view: frame_idx = int(re.search(r'\d+', view).group()) seen_frame_idx.add(frame_idx) return list(seen_frame_idx) @staticmethod def load_model_points(root,scene_idx): model_path = os.path.join(root, f"sequence.{scene_idx}", "world_points.txt") model_pts = np.loadtxt(model_path) return model_pts @staticmethod def read_exr_depth(depth_path): file = OpenEXR.InputFile(depth_path) dw = file.header()['dataWindow'] width = dw.max.x - dw.min.x + 1 height = dw.max.y - dw.min.y + 1 pix_type = Imath.PixelType(Imath.PixelType.FLOAT) depth_map = np.frombuffer(file.channel('R', pix_type), dtype=np.float32) depth_map.shape = (height, width) return depth_map @staticmethod def load_depth(path): depth_path = path + ".camera.Depth.exr" depth_map = DataLoadUtil.read_exr_depth(depth_path) return depth_map @staticmethod def load_label(path): with open(path, 'r') as f: label_data = json.load(f) return label_data @staticmethod def load_rgb(path): rgb_path = path + ".camera.png" rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR) return rgb_image @staticmethod def load_seg(path): seg_path = path + ".camera.semantic segmentation.png" seg_image = cv2.imread(seg_path, cv2.IMREAD_COLOR) return seg_image @staticmethod def load_cam_info(path): label_path = path + ".camera_params.json" with open(label_path, 'r') as f: label_data = json.load(f) cam_transform = np.asarray(label_data['cam_to_world']).reshape( (4, 4) ).T offset = np.asarray([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) cam_to_world = cam_transform @ offset f_x = label_data['f_x'] f_y = label_data['f_y'] c_x = label_data['c_x'] c_y = label_data['c_y'] cam_intrinsic = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]]) return { "cam_to_world": cam_to_world, "cam_intrinsic": cam_intrinsic } @staticmethod def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)): h, w = depth.shape i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy') z = depth x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1) points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3] mask = mask.reshape(-1, 3) target_mask = np.all(mask == target_mask_label, axis=-1) return { "points_world": points_world[target_mask], "points_camera": points_camera[target_mask] } @staticmethod def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)): h, w = depth.shape i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy') z = depth x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1) points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3] mask = mask.reshape(-1, 3) target_mask = np.all(mask == target_mask_label, axis=-1) return { "points_world": points_world[target_mask], "points_camera": points_camera[target_mask] } @staticmethod def get_point_cloud_world_from_path(path): cam_info = DataLoadUtil.load_cam_info(path) depth = DataLoadUtil.load_depth(path) mask = DataLoadUtil.load_seg(path) point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask) return point_cloud['points_world'] @staticmethod def get_point_cloud_list_from_seq(root, seq_idx, num_frames): point_cloud_list = [] for idx in range(num_frames): path = DataLoadUtil.get_path(root, seq_idx, idx) point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path) point_cloud_list.append(point_cloud) return point_cloud_list