import os import numpy as np import json import cv2 import trimesh class DataLoadUtil: @staticmethod def get_path(root, scene_name, frame_idx): path = os.path.join(root, scene_name, f"{frame_idx}") return path @staticmethod def get_label_path(root, scene_name): path = os.path.join(root,scene_name, f"label.json") return path @staticmethod def load_model_points(root, scene_name): model_path = os.path.join(root, scene_name, "sampled_model_points.txt") mesh = trimesh.load(model_path) return mesh.vertices @staticmethod def load_depth(path): depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png") depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) depth = depth.astype(np.float32) / 65535.0 min_depth = 0.01 max_depth = 5.0 depth_meters = min_depth + (max_depth - min_depth) * depth return depth_meters @staticmethod def load_label(path): with open(path, 'r') as f: label_data = json.load(f) return label_data @staticmethod def load_rgb(path): rgb_path = os.path.join(os.path.dirname(path), "rgb", os.path.basename(path) + ".png") rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR) return rgb_image @staticmethod def load_seg(path): mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png") mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) return mask_image @staticmethod def cam_pose_transformation(cam_pose_before): offset = np.asarray([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) cam_pose_after = cam_pose_before @ offset return cam_pose_after @staticmethod def load_cam_info(path): camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json") with open(camera_params_path, 'r') as f: label_data = json.load(f) cam_to_world = np.asarray(label_data["extrinsic"]) cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world) cam_intrinsic = np.asarray(label_data["intrinsic"]) return { "cam_to_world": cam_to_world, "cam_intrinsic": cam_intrinsic } @staticmethod def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=255): h, w = depth.shape i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy') z = depth x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) mask = mask.reshape(-1, 3) target_mask = np.all(mask == target_mask_label) target_points_camera = points_camera[target_mask] target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1) target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3] return { "points_world": target_points_world, "points_camera": target_points_camera } @staticmethod def get_point_cloud_world_from_path(path): cam_info = DataLoadUtil.load_cam_info(path) depth = DataLoadUtil.load_depth(path) mask = DataLoadUtil.load_seg(path) point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask) return point_cloud['points_world'] @staticmethod def get_point_cloud_list_from_seq(root, seq_idx, num_frames): point_cloud_list = [] for idx in range(num_frames): path = DataLoadUtil.get_path(root, seq_idx, idx) point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path) point_cloud_list.append(point_cloud) return point_cloud_list