import os import numpy as np from PytorchBoot.dataset import BaseDataset import PytorchBoot.stereotype as stereotype import sys sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction") from utils.data_load import DataLoadUtil from utils.pose import PoseUtil @stereotype.dataset("nbv_reconstruction_dataset", comment="to be modified") class NBVReconstructionDataset(BaseDataset): def __init__(self, config): super(NBVReconstructionDataset, self).__init__(config) self.config = config self.label_dir = config["label_dir"] self.root_dir = config["root_dir"] self.datalist = self.get_datalist() def get_datalist(self): datalist = [] scene_name_list = os.listdir(self.root_dir) for scene_name in scene_name_list: label_path = DataLoadUtil.get_label_path(self.label_dir, scene_name) label_data = DataLoadUtil.load_label(label_path) for data_pair in label_data["data_pairs"]: scanned_views = data_pair[0] next_best_view = data_pair[1] max_coverage_rate = label_data["max_coverage_rate"] datalist.append( { "scanned_views": scanned_views, "next_best_view": next_best_view, "max_coverage_rate": max_coverage_rate, "scene_name": scene_name, } ) return datalist def __getitem__(self, index): data_item_info = self.datalist[index] scanned_views = data_item_info["scanned_views"] nbv = data_item_info["next_best_view"] max_coverage_rate = data_item_info["max_coverage_rate"] scene_name = data_item_info["scene_name"] scanned_views_pts, scanned_coverages_rate, scanned_cam_pose = [], [], [] for view in scanned_views: frame_idx = view[0] coverage_rate = view[1] view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx) pts = DataLoadUtil.load_depth(view_path) scanned_views_pts.append(pts) scanned_coverages_rate.append(coverage_rate) cam_pose = DataLoadUtil.load_cam_info(view_path)["cam_to_world"] cam_pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(cam_pose[:3,:3])) translation = cam_pose[:3,3] cam_pose_9d = np.concatenate([cam_pose_6d, translation], axis=0) scanned_cam_pose.append(cam_pose_9d) nbv_idx, nbv_coverage_rate = nbv[0], nbv[1] nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx) nbv_pts = DataLoadUtil.load_depth(nbv_path) cam_info = DataLoadUtil.load_cam_info(nbv_path) nbv_cam_pose = cam_info["cam_to_world"] nbv_cam_pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(nbv_cam_pose[:3,:3])) translation = nbv_cam_pose[:3,3] nbv_cam_pose_9d = np.concatenate([nbv_cam_pose_6d, translation], axis=0) data_item = { "scanned_views_pts": np.asarray(scanned_views_pts,dtype=np.float32), "scanned_coverages_rate": np.asarray(scanned_coverages_rate,dtype=np.float32), "scanned_cam_pose": np.asarray(scanned_cam_pose,dtype=np.float32), "nbv_pts": np.asarray(nbv_pts,dtype=np.float32), "nbv_coverage_rate": nbv_coverage_rate, "nbv_cam_pose": nbv_cam_pose_9d, "max_coverage_rate": max_coverage_rate, "scene_name": scene_name } return data_item def __len__(self): return len(self.datalist) if __name__ == "__main__": import torch config = { "root_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_dataset", "label_dir": "C:\\Document\\Local Project\\nbv_rec\\sample_output", "ratio": 0.1, "batch_size": 1, "num_workers": 0, } ds = NBVReconstructionDataset(config) dl = ds.get_loader(shuffle=True) for idx, data in enumerate(dl): for key, value in data.items(): if isinstance(value, torch.Tensor): print(key, ":" ,value.shape) print()