import os import json import numpy as np from PytorchBoot.runners.runner import Runner from PytorchBoot.config import ConfigManager from PytorchBoot.utils import Log import PytorchBoot.stereotype as stereotype from utils.data_load import DataLoadUtil from utils.reconstruction import ReconstructionUtil from utils.pts import PtsUtil @stereotype.runner("strategy_generator") class StrategyGenerator(Runner): def __init__(self, config): super().__init__(config) self.load_experiment("generate") def run(self): dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list") voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold") self.save_pts = ConfigManager.get("runner","generate","save_points") for dataset_name in dataset_name_list: root_dir = ConfigManager.get("datasets", dataset_name, "root_dir") model_dir = ConfigManager.get("datasets", dataset_name, "model_dir") scene_name_list = os.listdir(root_dir) cnt = 0 total = len(scene_name_list) for scene_name in scene_name_list: Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}") self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold) cnt += 1 def create_experiment(self, backup_name=None): super().create_experiment(backup_name) output_dir = os.path.join(str(self.experiment_path), "output") os.makedirs(output_dir) def load_experiment(self, backup_name=None): super().load_experiment(backup_name) def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold): frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name) model_pts = DataLoadUtil.load_original_model_points(model_dir, scene_name) down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold) obj_pose = DataLoadUtil.load_target_object_pose(root, scene_name) down_sampled_transformed_model_pts = PtsUtil.transform_point_cloud(down_sampled_model_pts, obj_pose) pts_list = [] for frame_idx in range(frame_num): path = DataLoadUtil.get_path(root, scene_name, frame_idx) point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path) sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold) if self.save_pts: pts_dir = os.path.join(root,scene_name, "pts") if not os.path.exists(pts_dir): os.makedirs(pts_dir) np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud) pts_list.append(sampled_point_cloud) limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold) data_pairs = self.generate_data_pairs(limited_useful_view) seq_save_data = { "data_pairs": data_pairs, "best_sequence": limited_useful_view, "max_coverage_rate": limited_useful_view[-1][1] } Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}") output_label_path = DataLoadUtil.get_label_path(root, scene_name) with open(output_label_path, 'w') as f: json.dump(seq_save_data, f) DataLoadUtil.save_downsampled_world_model_points(root, scene_name, down_sampled_transformed_model_pts) def generate_data_pairs(self, useful_view): data_pairs = [] for next_view_idx in range(len(useful_view)): scanned_views = useful_view[:next_view_idx] next_view = useful_view[next_view_idx] data_pairs.append((scanned_views, next_view)) return data_pairs