import os import json import numpy as np from PytorchBoot.runners.runner import Runner from PytorchBoot.config import ConfigManager from PytorchBoot.utils import Log import PytorchBoot.stereotype as stereotype from PytorchBoot.status import status_manager from utils.data_load import DataLoadUtil from utils.reconstruction import ReconstructionUtil from utils.pts import PtsUtil @stereotype.runner("strategy_generator") class StrategyGenerator(Runner): def __init__(self, config): super().__init__(config) self.load_experiment("generate") self.status_info = { "status_manager": status_manager, "app_name": "generate", "runner_name": "strategy_generator" } self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir") self.save_best_combined_pts = ConfigManager.get("runner", "generate", "save_best_combined_points") self.save_mesh = ConfigManager.get("runner", "generate", "save_mesh") self.filter_degree = ConfigManager.get("runner", "generate", "filter_degree") self.overwrite = ConfigManager.get("runner", "generate", "overwrite") def run(self): dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list") voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold") self.save_pts = ConfigManager.get("runner","generate","save_points") for dataset_idx in range(len(dataset_name_list)): dataset_name = dataset_name_list[dataset_idx] status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list)) root_dir = ConfigManager.get("datasets", dataset_name, "root_dir") model_dir = ConfigManager.get("datasets", dataset_name, "model_dir") scene_name_list = os.listdir(root_dir) cnt = 0 total = len(scene_name_list) for scene_name in scene_name_list: Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}") status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total) diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name) voxel_threshold = diag*0.02 status_manager.set_status("generate", "strategy_generator", "voxel_threshold", voxel_threshold) output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name) if os.path.exists(output_label_path) and not self.overwrite: Log.info(f"Scene <{scene_name}> Already Exists, Skip") cnt += 1 continue self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold) cnt += 1 status_manager.set_progress("generate", "strategy_generator", "scene", total, total) status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list)) def create_experiment(self, backup_name=None): super().create_experiment(backup_name) output_dir = os.path.join(str(self.experiment_path), "output") os.makedirs(output_dir) def load_experiment(self, backup_name=None): super().load_experiment(backup_name) def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold): status_manager.set_status("generate", "strategy_generator", "scene", scene_name) frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name) model_points_normals = DataLoadUtil.load_points_normals(root, scene_name) model_pts = model_points_normals[:,:3] down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold) pts_list = [] for frame_idx in range(frame_num): path = DataLoadUtil.get_path(root, scene_name, frame_idx) cam_params = DataLoadUtil.load_cam_info(path, binocular=True) status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num) point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True) #display_table = None #DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True, target_mask_label=()) #TODO sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree) if self.save_pts: pts_dir = os.path.join(root,scene_name, "pts") if not os.path.exists(pts_dir): os.makedirs(pts_dir) np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud) pts_list.append(sampled_point_cloud) status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num) limited_useful_view, _, best_combined_pts = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info) data_pairs = self.generate_data_pairs(limited_useful_view) seq_save_data = { "data_pairs": data_pairs, "best_sequence": limited_useful_view, "max_coverage_rate": limited_useful_view[-1][1] } status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1]) Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}") output_label_path = DataLoadUtil.get_label_path(root, scene_name) output_best_reconstructed_pts_path = os.path.join(root,scene_name, f"best_reconstructed_pts.txt") with open(output_label_path, 'w') as f: json.dump(seq_save_data, f) if self.save_best_combined_pts: np.savetxt(output_best_reconstructed_pts_path, best_combined_pts) if self.save_mesh: DataLoadUtil.save_target_mesh_at_world_space(root, model_dir, scene_name) DataLoadUtil.save_downsampled_world_model_points(root, scene_name, down_sampled_model_pts) def generate_data_pairs(self, useful_view): data_pairs = [] for next_view_idx in range(1, len(useful_view)): scanned_views = useful_view[:next_view_idx] next_view = useful_view[next_view_idx] data_pairs.append((scanned_views, next_view)) return data_pairs