import numpy as np from scipy.spatial import cKDTree from utils.pts import PtsUtil class ReconstructionUtil: @staticmethod def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01): kdtree = cKDTree(combined_point_cloud) distances, _ = kdtree.query(target_point_cloud) covered_points = np.sum(distances < threshold) coverage_rate = covered_points / target_point_cloud.shape[0] return coverage_rate @staticmethod def compute_overlap_rate(new_point_cloud, combined_point_cloud, threshold=0.01): kdtree = cKDTree(combined_point_cloud) distances, _ = kdtree.query(new_point_cloud) overlapping_points = np.sum(distances < threshold) overlap_rate = overlapping_points / new_point_cloud.shape[0] return overlap_rate @staticmethod def combine_point_with_view_sequence(point_list, view_sequence): selected_views = [] for view_index, _ in view_sequence: selected_views.append(point_list[view_index]) return np.vstack(selected_views) @staticmethod def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01): best_view = None best_coverage_increase = -1 current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold) for view_index, view in enumerate(views): candidate_views = combined_point_cloud + [view] down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold) new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold) coverage_increase = new_coverage - current_coverage if coverage_increase > best_coverage_increase: best_coverage_increase = coverage_increase best_view = view_index return best_view, best_coverage_increase @staticmethod def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, threshold=0.01, overlap_threshold=0.3, status_info=None): selected_views = [] current_coverage = 0.0 remaining_views = list(range(len(point_cloud_list))) view_sequence = [] cnt_processed_view = 0 while remaining_views: best_view = None best_coverage_increase = -1 for view_index in remaining_views: if selected_views: combined_old_point_cloud = np.vstack(selected_views) down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold) down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold) overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold) if overlap_rate < overlap_threshold: continue candidate_views = selected_views + [point_cloud_list[view_index]] combined_point_cloud = np.vstack(candidate_views) down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold) new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold) coverage_increase = new_coverage - current_coverage #print(f"view_index: {view_index}, coverage_increase: {coverage_increase}") if coverage_increase > best_coverage_increase: best_coverage_increase = coverage_increase best_view = view_index cnt_processed_view += 1 if status_info is not None: sm = status_info["status_manager"] app_name = status_info["app_name"] runner_name = status_info["runner_name"] sm.set_status(app_name, runner_name, "current coverage", current_coverage) sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list)) if best_view is not None: if best_coverage_increase <=1e-3: break selected_views.append(point_cloud_list[best_view]) remaining_views.remove(best_view) if best_coverage_increase > 0: current_coverage += best_coverage_increase view_sequence.append((best_view, current_coverage)) else: break if status_info is not None: sm = status_info["status_manager"] app_name = status_info["app_name"] runner_name = status_info["runner_name"] sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list)) return view_sequence, remaining_views @staticmethod def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=45): sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size) kdtree = cKDTree(points_normals[:,:3]) _, indices = kdtree.query(sampled_points) nearest_points = points_normals[indices] normals = nearest_points[:, 3:] camera_axis = -cam_pose[:3, 2] normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) cos_theta = np.dot(normals_normalized, camera_axis) theta_rad = np.deg2rad(theta) filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)] return filtered_sampled_points[:, :3]