import torch from torch import nn import PytorchBoot.stereotype as stereotype @stereotype.module("transformer_seq_encoder") class TransformerSequenceEncoder(nn.Module): def __init__(self, config): super(TransformerSequenceEncoder, self).__init__() self.config = config embed_dim = config['pts_embed_dim'] + config['pose_embed_dim'] self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim)) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim']) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers']) self.fc = nn.Linear(embed_dim, config['output_dim']) def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch): batch_size = len(pts_embedding_list_batch) combined_features_batch = [] for i in range(batch_size): combined_features = [torch.cat((pts_embed, pose_embed), dim=-1) for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])] combined_features_batch.append(torch.stack(combined_features)) combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim] # Adjust positional encoding to match batch size pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1) combined_tensor = combined_tensor + pos_encoding # Transformer encoding transformer_output = self.transformer_encoder(combined_tensor) # Mean pooling final_feature = transformer_output.mean(dim=1) # Fully connected layer final_output = self.fc(final_feature) return final_output if __name__ == "__main__": config = { 'pts_embed_dim': 1024, # 每个点云embedding的维度 'pose_embed_dim': 256, # 每个姿态embedding的维度 'num_heads': 4, # 多头注意力机制的头数 'ffn_dim': 256, # 前馈神经网络的维度 'num_layers': 3, # Transformer 编码层数 'max_seq_len': 10, # 最大序列长度 'output_dim': 2048, # 输出特征维度 } encoder = TransformerSequenceEncoder(config) seq_len = 5 batch_size = 4 pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)] pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)] output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch) print("Encoded Feature:", output_feature) print("Feature Shape:", output_feature.shape)