import torch from torch import nn from torch.nn.utils.rnn import pad_sequence import PytorchBoot.stereotype as stereotype @stereotype.module("transformer_seq_encoder") class TransformerSequenceEncoder(nn.Module): def __init__(self, config): super(TransformerSequenceEncoder, self).__init__() self.config = config embed_dim = config["embed_dim"] encoder_layer = nn.TransformerEncoderLayer( d_model=embed_dim, nhead=config["num_heads"], dim_feedforward=config["ffn_dim"], batch_first=True, ) self.transformer_encoder = nn.TransformerEncoder( encoder_layer, num_layers=config["num_layers"] ) self.fc = nn.Linear(embed_dim, config["output_dim"]) def encode_sequence(self, embedding_list_batch): lengths = [] for embedding_list in embedding_list_batch: lengths.append(len(embedding_list)) embedding_tensor = pad_sequence(embedding_list_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim] max_len = max(lengths) padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(embedding_tensor.device) transformer_output = self.transformer_encoder(embedding_tensor, src_key_padding_mask=padding_mask) final_feature = transformer_output.mean(dim=1) final_output = self.fc(final_feature) return final_output if __name__ == "__main__": config = { "embed_dim": 256, "num_heads": 4, "ffn_dim": 256, "num_layers": 3, "output_dim": 1024, } encoder = TransformerSequenceEncoder(config) seq_len = [5, 8, 9, 4] batch_size = 4 embedding_list_batch = [ torch.randn(seq_len[idx], config["embed_dim"]) for idx in range(batch_size) ] output_feature = encoder.encode_sequence( embedding_list_batch ) print("Encoded Feature:", output_feature) print("Feature Shape:", output_feature.shape)