diff --git a/core/nbv_dataset.py b/core/nbv_dataset.py index 829bb01..fdba676 100644 --- a/core/nbv_dataset.py +++ b/core/nbv_dataset.py @@ -166,7 +166,7 @@ class NBVReconstructionDataset(BaseDataset): point_cloud_R = PtsUtil.random_downsample_point_cloud( point_cloud_R, 65536 ) - overlap_points = DataLoadUtil.get_overlapping_points( + overlap_points = PtsUtil.get_overlapping_points( point_cloud_L, point_cloud_R ) downsampled_target_point_cloud = ( diff --git a/core/seq_dataset.py b/core/seq_dataset.py index f2f7bc3..da60056 100644 --- a/core/seq_dataset.py +++ b/core/seq_dataset.py @@ -89,7 +89,7 @@ class SeqNBVReconstructionDataset(BaseDataset): first_point_cloud_L = PtsUtil.random_downsample_point_cloud(first_point_cloud_L, 65536) first_point_cloud_R = PtsUtil.random_downsample_point_cloud(first_point_cloud_R, 65536) - first_overlap_points = DataLoadUtil.get_overlapping_points(first_point_cloud_L, first_point_cloud_R) + first_overlap_points = PtsUtil.get_overlapping_points(first_point_cloud_L, first_point_cloud_R) first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_overlap_points, self.pts_num) first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3])) diff --git a/preprocess/preprocessor.py b/preprocess/preprocessor.py new file mode 100644 index 0000000..aa077fc --- /dev/null +++ b/preprocess/preprocessor.py @@ -0,0 +1,151 @@ +import os +import json +import numpy as np +from utils.reconstruction import ReconstructionUtil +from utils.data_load import DataLoadUtil +from utils.pts import PtsUtil + +def save_np_pts(path, pts: np.ndarray, file_type="txt"): + if file_type == "txt": + np.savetxt(path, pts) + else: + np.save(path, pts) + +def save_full_points(root, scene, frame_idx, full_points: np.ndarray, file_type="txt"): + pts_path = os.path.join(root,scene, "scene_pts", f"{frame_idx}.{file_type}") + if not os.path.exists(os.path.join(root,scene, "scene_pts")): + os.makedirs(os.path.join(root,scene, "scene_pts")) + save_np_pts(pts_path, full_points, file_type) + +def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_type="txt"): + pts_path = os.path.join(root,scene, "target_pts", f"{frame_idx}.{file_type}") + if not os.path.exists(os.path.join(root,scene, "target_pts")): + os.makedirs(os.path.join(root,scene, "target_pts")) + save_np_pts(pts_path, target_points, file_type) + +def save_mask_idx(root, scene, frame_idx, mask_idx: np.ndarray,filtered_idx, file_type="txt"): + indices_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}.{file_type}") + if not os.path.exists(os.path.join(root,scene, "mask_idx")): + os.makedirs(os.path.join(root,scene, "mask_idx")) + save_np_pts(indices_path, mask_idx, file_type) + filtered_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}_filtered.{file_type}") + save_np_pts(filtered_path, filtered_idx, file_type) + +def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"): + indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}") + if not os.path.exists(os.path.join(root,scene, "scan_points_indices")): + os.makedirs(os.path.join(root,scene, "scan_points_indices")) + save_np_pts(indices_path, scan_points_indices, file_type) + +def save_scan_points(root, scene, scan_points: np.ndarray): + scan_points_path = os.path.join(root,scene, "scan_points.txt") + save_np_pts(scan_points_path, scan_points) + + +def get_world_points(depth, cam_intrinsic, cam_extrinsic): + h, w = depth.shape + i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy") + + z = depth + x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0] + y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1] + + points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3) + points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1) + points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3] + return points_camera_world + +def get_world_normals(normal_image, cam_extrinsic): + normals = normal_image.reshape(-1, 3) + normals = normals / np.linalg.norm(normals, axis=1, keepdims=True) + normals_world = np.dot(cam_extrinsic[:3, :3], normals.T).T + return normals_world + +def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic): + scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1)))) + points_camera = np.dot(cam_extrinsic, scan_points_homogeneous.T).T[:, :3] + points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T + points_image_homogeneous /= points_image_homogeneous[:, 2:] + pixel_x = points_image_homogeneous[:, 0].astype(int) + pixel_y = points_image_homogeneous[:, 1].astype(int) + h, w = mask.shape[:2] + valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h) + mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]] + selected_points_indices = mask_colors == display_table_mask_label + return selected_points_indices + + +def save_scene_data(root, scene): + + ''' configuration ''' + target_mask_label = (0, 255, 0, 255) + display_table_mask_label=(0, 0, 255, 255) + random_downsample_N = 65536 + train_input_pts_num = 8192 + voxel_size=0.002 + filter_degree = 75 + + ''' scan points ''' + display_table_info = DataLoadUtil.get_display_table_info(root, scene) + radius = display_table_info["radius"] + scan_points = ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius) + + ''' read frame data(depth|mask|normal) ''' + frame_num = DataLoadUtil.get_scene_seq_length(root, scene) + for frame_id in range(frame_num): + path = DataLoadUtil.get_path(root, scene, frame_id) + cam_info = DataLoadUtil.load_cam_info(path, binocular=True) + depth_L, depth_R = DataLoadUtil.load_depth( + path, cam_info["near_plane"], + cam_info["far_plane"], + binocular=True + ) + mask_L = DataLoadUtil.load_seg(path, binocular=True, left_only=True) + normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True) + + ''' scene points ''' + scene_points_L = get_world_points(depth_L, cam_info["cam_intrinsic_L"], cam_info["cam_extrinsic_L"]) + scene_points_R = get_world_points(depth_R, cam_info["cam_intrinsic_R"], cam_info["cam_extrinsic_R"]) + scene_points_L, random_sample_idx_L = PtsUtil.random_downsample_point_cloud( + scene_points_L, random_downsample_N, require_idx=True + ) + scene_points_R = PtsUtil.random_downsample_point_cloud( + scene_points_R, random_downsample_N + ) + scene_overlap_points, overlap_idx_L = PtsUtil.get_overlapping_points( + scene_points_L, scene_points_R, voxel_size, require_idx=True + ) + train_input_points, train_input_idx = PtsUtil.random_downsample_point_cloud( + scene_overlap_points, train_input_pts_num, require_idx=True + ) + + ''' target points ''' + mask_L = mask_L.reshape(-1, 4) + mask_L = (mask_L == target_mask_label).all(axis=-1) + mask_overlap = mask_L[random_sample_idx_L][overlap_idx_L] + scene_normals_L = get_world_normals(normal_L, cam_info["cam_extrinsic_L"]) + target_points = scene_overlap_points[mask_overlap] + target_normals = scene_normals_L[mask_overlap] + filtered_target_points, filtered_idx = PtsUtil.filter_points( + target_points, target_normals, cam_info["cam_extrinsic_L"], filter_degree, require_idx=True + ) + + ''' train_input_mask ''' + mask_train_input = mask_overlap[train_input_idx] + + + ''' scan points indices ''' + scan_points_indices = get_scan_points_indices(scan_points, mask_L, display_table_mask_label, cam_info["cam_intrinsic_L"], cam_info["cam_extrinsic_L"]) + + save_full_points(root, scene, frame_id, train_input_points) + save_target_points(root, scene, frame_id, filtered_target_points) + save_mask_idx(root, scene, frame_id, mask_train_input, filtered_idx=filtered_idx) + save_scan_points_indices(root, scene, frame_id, scan_points_indices) + + save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess + + +if __name__ == "__main__": + root = "" + for scene in os.listdir(root): + save_scene_data(root, scene) \ No newline at end of file diff --git a/runners/strategy_generator.py b/runners/strategy_generator.py index 21ac203..62ddffd 100644 --- a/runners/strategy_generator.py +++ b/runners/strategy_generator.py @@ -52,9 +52,8 @@ class StrategyGenerator(Runner): for scene_name in scene_name_list[from_idx:to_idx]: Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}") status_manager.set_progress("generate_strategy", "strategy_generator", "scene", cnt, total) - #diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name) - voxel_threshold = 0.002 - status_manager.set_status("generate_strategy", "strategy_generator", "voxel_threshold", voxel_threshold) + diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name) + status_manager.set_status("generate_strategy", "strategy_generator", "diagonal", diag) output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name,0) if os.path.exists(output_label_path) and not self.overwrite: Log.info(f"Scene <{scene_name}> Already Exists, Skip") @@ -82,71 +81,16 @@ class StrategyGenerator(Runner): model_points_normals = DataLoadUtil.load_points_normals(root, scene_name) model_pts = model_points_normals[:,:3] down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold) - display_table_info = DataLoadUtil.get_display_table_info(root, scene_name) - radius = display_table_info["radius"] - scan_points_path = os.path.join(root,scene_name, "scan_points.txt") - if os.path.exists(scan_points_path): - scan_points = np.loadtxt(scan_points_path) - else: - scan_points = ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius) - np.savetxt(scan_points_path, scan_points) pts_list = [] scan_points_indices_list = [] non_zero_cnt = 0 for frame_idx in range(frame_num): status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num) - pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.txt") - if self.load_pts and pts_path: - with open(pts_path, 'r') as f: - pts_str = f.read() - if pts_str == "": - sampled_point_cloud = np.asarray([]) - else: - sampled_point_cloud = np.loadtxt(pts_path) - indices_path = os.path.join(root,scene_name, "covered_scan_pts", f"{frame_idx}_indices.txt") - with open(indices_path, 'r') as f: - indices_str = f.read() - if indices_str == "": - indices = [] - else: - indices = np.loadtxt(indices_path).astype(np.int32).tolist() - if isinstance(indices, int): - indices = [indices] - - pts_list.append(sampled_point_cloud) - if sampled_point_cloud.shape[0] != 0: - non_zero_cnt += 1 - scan_points_indices_list.append(indices) - - else: - path = DataLoadUtil.get_path(root, scene_name, frame_idx) - cam_params = DataLoadUtil.load_cam_info(path, binocular=True) - point_cloud, display_table_pts = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True, get_display_table_pts=True) - - if point_cloud.shape[0] != 0: - sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree) - non_zero_cnt += 1 - else: - sampled_point_cloud = point_cloud - - covered_pts, indices = ReconstructionUtil.compute_covered_scan_points(scan_points, display_table_pts) - - if self.save_pts: - pts_dir = os.path.join(root,scene_name, "pts") - #display_dir = os.path.join(root,scene_name, "display_pts") - covered_pts_dir = os.path.join(root,scene_name, "covered_scan_pts") - if not os.path.exists(pts_dir): - os.makedirs(pts_dir) - if not os.path.exists(covered_pts_dir): - os.makedirs(covered_pts_dir) - # if not os.path.exists(display_dir): - # os.makedirs(display_dir) - np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud) - #np.savetxt(os.path.join(display_dir, f"{frame_idx}.txt"), display_table_pts) - np.savetxt(os.path.join(covered_pts_dir, f"{frame_idx}.txt"), covered_pts) - np.savetxt(os.path.join(covered_pts_dir, f"{frame_idx}_indices.txt"), indices) - pts_list.append(sampled_point_cloud) - scan_points_indices_list.append(indices) + pts_path = os.path.join(root,scene_name, "target_pts", f"{frame_idx}.txt") + sampled_point_cloud = np.loadtxt(pts_path) + indices = None # ReconstructionUtil.compute_covered_scan_points(scan_points, display_table_pts) + pts_list.append(sampled_point_cloud) + scan_points_indices_list.append(indices) status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num) seq_num = min(self.seq_num, non_zero_cnt) diff --git a/utils/data_load.py b/utils/data_load.py index 584f4e4..e74efe4 100644 --- a/utils/data_load.py +++ b/utils/data_load.py @@ -157,8 +157,8 @@ class DataLoadUtil: return depth_meters @staticmethod - def load_seg(path, binocular=False): - if binocular: + def load_seg(path, binocular=False, left_only=False): + if binocular and not left_only: def clean_mask(mask_image): green = [0, 255, 0, 255] @@ -182,11 +182,41 @@ class DataLoadUtil: mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED)) return mask_image_L, mask_image_R else: - mask_path = os.path.join( - os.path.dirname(path), "mask", os.path.basename(path) + ".png" - ) + if binocular and left_only: + mask_path = os.path.join( + os.path.dirname(path), "mask", os.path.basename(path) + "_L.png" + ) + else: + mask_path = os.path.join( + os.path.dirname(path), "mask", os.path.basename(path) + ".png" + ) mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) return mask_image + + @staticmethod + def load_normal(path, binocular=False, left_only=False): + if binocular and not left_only: + normal_path_L = os.path.join( + os.path.dirname(path), "normal", os.path.basename(path) + "_L.png" + ) + normal_image_L = cv2.imread(normal_path_L, cv2.IMREAD_UNCHANGED) + normal_path_R = os.path.join( + os.path.dirname(path), "normal", os.path.basename(path) + "_R.png" + ) + normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_UNCHANGED) + return normal_image_L, normal_image_R + else: + if binocular and left_only: + normal_path = os.path.join( + os.path.dirname(path), "normal", os.path.basename(path) + "_L.png" + ) + + else: + normal_path = os.path.join( + os.path.dirname(path), "normal", os.path.basename(path) + ".png" + ) + normal_image = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED) + return normal_image @staticmethod def load_label(path): @@ -273,7 +303,7 @@ class DataLoadUtil: @staticmethod def get_target_point_cloud( - depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255) + depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255), require_full_points=False ): h, w = depth.shape i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy") @@ -293,10 +323,11 @@ class DataLoadUtil: ) target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3] - return { + data = { "points_world": target_points_world, "points_camera": target_points_camera, } + return data @staticmethod def get_point_cloud(depth, cam_intrinsic, cam_extrinsic): @@ -323,7 +354,8 @@ class DataLoadUtil: voxel_size=0.005, target_mask_label=(0, 255, 0, 255), display_table_mask_label=(0, 0, 255, 255), - get_display_table_pts=False + get_display_table_pts=False, + require_normal=False, ): cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular) if binocular: @@ -351,34 +383,9 @@ class DataLoadUtil: point_cloud_R = PtsUtil.random_downsample_point_cloud( point_cloud_R, random_downsample_N ) - overlap_points = DataLoadUtil.get_overlapping_points( + overlap_points = PtsUtil.get_overlapping_points( point_cloud_L, point_cloud_R, voxel_size ) - if get_display_table_pts: - display_pts_L = DataLoadUtil.get_target_point_cloud( - depth_L, - cam_info["cam_intrinsic"], - cam_info["cam_to_world"], - mask_L, - display_table_mask_label, - )["points_world"] - display_pts_R = DataLoadUtil.get_target_point_cloud( - depth_R, - cam_info["cam_intrinsic"], - cam_info["cam_to_world_R"], - mask_R, - display_table_mask_label, - )["points_world"] - display_pts_L = PtsUtil.random_downsample_point_cloud( - display_pts_L, random_downsample_N - ) - point_cloud_R = PtsUtil.random_downsample_point_cloud( - display_pts_R, random_downsample_N - ) - display_pts_overlap = DataLoadUtil.get_overlapping_points( - display_pts_L, display_pts_R, voxel_size - ) - return overlap_points, display_pts_overlap return overlap_points else: depth = DataLoadUtil.load_depth( @@ -390,27 +397,6 @@ class DataLoadUtil: )["points_world"] return point_cloud - @staticmethod - def voxelize_points(points, voxel_size): - - voxel_indices = np.floor(points / voxel_size).astype(np.int32) - unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True) - return unique_voxels - - @staticmethod - def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005): - voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size) - voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size) - - voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3) - voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3) - overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R) - mask_L = np.isin( - indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0] - ) - overlapping_points = point_cloud_L[mask_L] - return overlapping_points - @staticmethod def load_points_normals(root, scene_name, display_table_as_world_space_origin=True): points_path = os.path.join(root, scene_name, "points_and_normals.txt") diff --git a/utils/pts.py b/utils/pts.py index 675f339..1cdc659 100644 --- a/utils/pts.py +++ b/utils/pts.py @@ -18,13 +18,49 @@ class PtsUtil: return points_h[:, :3] @staticmethod - def random_downsample_point_cloud(point_cloud, num_points): + def random_downsample_point_cloud(point_cloud, num_points, require_idx=False): if point_cloud.shape[0] == 0: return point_cloud idx = np.random.choice(len(point_cloud), num_points, replace=True) + if require_idx: + return point_cloud[idx], idx return point_cloud[idx] @staticmethod def random_downsample_point_cloud_tensor(point_cloud, num_points): idx = torch.randint(0, len(point_cloud), (num_points,)) - return point_cloud[idx] \ No newline at end of file + return point_cloud[idx] + + @staticmethod + def voxelize_points(points, voxel_size): + voxel_indices = np.floor(points / voxel_size).astype(np.int32) + unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True) + return unique_voxels + + @staticmethod + def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False): + voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size) + voxels_R, _ = PtsUtil.voxelize_points(point_cloud_R, voxel_size) + + voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3) + voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3) + overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R) + mask_L = np.isin( + indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0] + ) + overlapping_points = point_cloud_L[mask_L] + if require_idx: + return overlapping_points, mask_L + return overlapping_points + + @staticmethod + def filter_points(points, normals, cam_pose, theta=75, require_idx=False): + camera_axis = -cam_pose[:3, 2] + normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) + cos_theta = np.dot(normals_normalized, camera_axis) + theta_rad = np.deg2rad(theta) + idx = cos_theta > np.cos(theta_rad) + filtered_points= points[idx] + if require_idx: + return filtered_points, idx + return filtered_points \ No newline at end of file diff --git a/utils/reconstruction.py b/utils/reconstruction.py index 622e753..74f039f 100644 --- a/utils/reconstruction.py +++ b/utils/reconstruction.py @@ -129,22 +129,7 @@ class ReconstructionUtil: runner_name = status_info["runner_name"] sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list)) return view_sequence, remaining_views, down_sampled_combined_point_cloud - - @staticmethod - def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=75): - sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size) - kdtree = cKDTree(points_normals[:,:3]) - _, indices = kdtree.query(sampled_points) - nearest_points = points_normals[indices] - normals = nearest_points[:, 3:] - camera_axis = -cam_pose[:3, 2] - normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) - cos_theta = np.dot(normals_normalized, camera_axis) - theta_rad = np.deg2rad(theta) - filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)] - - return filtered_sampled_points[:, :3] @staticmethod def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 100, max_attempts = 1000): diff --git a/utils/render.py b/utils/render.py index 286e04c..e1193ab 100644 --- a/utils/render.py +++ b/utils/render.py @@ -33,12 +33,11 @@ class RenderUtil: print(result.stderr) return None path = os.path.join(temp_dir, "tmp") - # ------ Debug Start ------ - # import ipdb;ipdb.set_trace() - # ------ Debug End ------ point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True) cam_params = DataLoadUtil.load_cam_info(path, binocular=True) - filtered_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree) + + ''' TODO: old code: filter_points api is changed, need to update the code ''' + filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree) full_scene_point_cloud = None if require_full_scene: depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True) @@ -47,7 +46,7 @@ class RenderUtil: point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536) point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536) - full_scene_point_cloud = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R) + full_scene_point_cloud = PtsUtil.get_overlapping_points(point_cloud_L, point_cloud_R) return filtered_point_cloud, full_scene_point_cloud \ No newline at end of file