update reconstruction
This commit is contained in:
parent
d098c9f951
commit
bb9b3f81c3
@ -28,8 +28,8 @@ runner:
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
#"/media/hofee/data/data/temp_output"
|
||||
root_dir: "/media/hofee/repository/new_full_box_data"
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
root_dir: "C:\\Document\\Local Project\\nbv_rec\\nbv_reconstruction\\test\\test_sample"
|
||||
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||
from: 0
|
||||
to: -1 # -1 means end
|
||||
#output_dir: "/media/hofee/data/data/label_output"
|
||||
|
@ -31,22 +31,6 @@ def save_scan_points(root, scene, scan_points: np.ndarray):
|
||||
scan_points_path = os.path.join(root,scene, "scan_points.txt")
|
||||
save_np_pts(scan_points_path, scan_points)
|
||||
|
||||
|
||||
def old_get_world_points(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world
|
||||
|
||||
def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic):
|
||||
z = depth[mask]
|
||||
i, j = np.nonzero(mask)
|
||||
@ -74,7 +58,7 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
|
||||
return selected_points_indices
|
||||
|
||||
|
||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
''' configuration '''
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
@ -128,8 +112,9 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
||||
sampled_target_points_L, sampled_target_points_R, voxel_size
|
||||
)
|
||||
|
||||
|
||||
if has_points:
|
||||
has_points = target_points.shape[0] > 0
|
||||
|
||||
if has_points:
|
||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||
target_points = PtsUtil.filter_points(
|
||||
@ -145,8 +130,8 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
|
||||
save_target_points(root, scene, frame_id, target_points)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices)
|
||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||
|
||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||
|
||||
@ -168,7 +153,7 @@ if __name__ == "__main__":
|
||||
total = to_idx - from_idx
|
||||
for scene in scene_list[from_idx:to_idx]:
|
||||
start = time.time()
|
||||
save_scene_data(root, scene, cnt, total)
|
||||
save_scene_data(root, scene, cnt, total, file_type="npy")
|
||||
cnt+=1
|
||||
end = time.time()
|
||||
print(f"Time cost: {end-start}")
|
@ -84,27 +84,38 @@ class StrategyGenerator(Runner):
|
||||
pts_list = []
|
||||
scan_points_indices_list = []
|
||||
non_zero_cnt = 0
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
pts_path = os.path.join(root,scene_name, "target_pts", f"{frame_idx}.txt")
|
||||
sampled_point_cloud = np.loadtxt(pts_path)
|
||||
indices = None # ReconstructionUtil.compute_covered_scan_points(scan_points, display_table_pts)
|
||||
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
||||
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
||||
point_cloud = np.load(pts_path)
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
|
||||
indices = np.load(idx_path)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
|
||||
scan_points_indices_list.append(indices)
|
||||
if sampled_point_cloud.shape[0] > 0:
|
||||
non_zero_cnt += 1
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
seq_num = min(self.seq_num, non_zero_cnt)
|
||||
init_view_list = []
|
||||
for i in range(seq_num):
|
||||
if pts_list[i].shape[0] < 100:
|
||||
continue
|
||||
init_view_list.append(i)
|
||||
idx = 0
|
||||
while len(init_view_list) < seq_num:
|
||||
if pts_list[idx].shape[0] > 100:
|
||||
init_view_list.append(idx)
|
||||
idx += 1
|
||||
|
||||
seq_idx = 0
|
||||
import time
|
||||
for init_view in init_view_list:
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
|
||||
start = time.time()
|
||||
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
|
||||
threshold=voxel_threshold, soft_overlap_threshold=soft_overlap_threshold, hard_overlap_threshold= hard_overlap_threshold, scan_points_threshold=10, status_info=self.status_info)
|
||||
end = time.time()
|
||||
print(f"Time: {end-start}")
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
|
@ -23,28 +23,6 @@ class ReconstructionUtil:
|
||||
overlap_rate = overlapping_points / new_point_cloud.shape[0]
|
||||
return overlap_rate
|
||||
|
||||
@staticmethod
|
||||
def combine_point_with_view_sequence(point_list, view_sequence):
|
||||
selected_views = []
|
||||
for view_index, _ in view_sequence:
|
||||
selected_views.append(point_list[view_index])
|
||||
return np.vstack(selected_views)
|
||||
|
||||
@staticmethod
|
||||
def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01):
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold)
|
||||
|
||||
for view_index, view in enumerate(views):
|
||||
candidate_views = combined_point_cloud + [view]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
return best_view, best_coverage_increase
|
||||
|
||||
@staticmethod
|
||||
def get_new_added_points(old_combined_pts, new_pts, threshold=0.005):
|
||||
@ -60,54 +38,70 @@ class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, soft_overlap_threshold=0.5, hard_overlap_threshold=0.7, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [point_cloud_list[init_view]]
|
||||
combined_point_cloud = np.vstack(selected_views)
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
max_rec_pts_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
|
||||
import time
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
|
||||
for view_index in remaining_views:
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
overlap_threshold = hard_overlap_threshold
|
||||
else:
|
||||
overlap_threshold = soft_overlap_threshold
|
||||
|
||||
combined_old_point_cloud = np.vstack(selected_views)
|
||||
down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold)
|
||||
down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold)
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold)
|
||||
start = time.time()
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(point_cloud_list[view_index],combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
# print(f"overlap_rate Time: {end-start}")
|
||||
if overlap_rate < overlap_threshold:
|
||||
continue
|
||||
|
||||
candidate_views = selected_views + [point_cloud_list[view_index]]
|
||||
combined_point_cloud = np.vstack(candidate_views)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
start = time.time()
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
#print(f"compute_coverage_rate Time: {end-start}")
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=3e-3:
|
||||
if best_coverage_increase <=1e-3:
|
||||
break
|
||||
selected_views.append(point_cloud_list[best_view])
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage}, Best coverage increase: {best_coverage_increase}, Max coverage: {max_rec_pts_coverage}")
|
||||
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
@ -123,12 +117,15 @@ class ReconstructionUtil:
|
||||
|
||||
else:
|
||||
break
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, down_sampled_combined_point_cloud
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
Loading…
x
Reference in New Issue
Block a user