define display table as world space origin
This commit is contained in:
parent
8d5d6d5df4
commit
bb75372f7e
@ -7,7 +7,7 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: new_test_overfit_2
|
||||
name: new_test_overfit_to_world
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@ -38,8 +38,8 @@ dataset:
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 128
|
||||
num_workers: 12
|
||||
batch_size: 160
|
||||
num_workers: 16
|
||||
pts_num: 4096
|
||||
|
||||
OmniObject3d_test:
|
||||
|
@ -17,6 +17,7 @@ from utils.reconstruction import ReconstructionUtil
|
||||
|
||||
@stereotype.dataset("nbv_reconstruction_dataset")
|
||||
class NBVReconstructionDataset(BaseDataset):
|
||||
DISPLAY_TABLE_POSITION = np.asarray([0,0,0.85])
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionDataset, self).__init__(config)
|
||||
self.config = config
|
||||
@ -37,6 +38,8 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||
expr_name = ConfigManager.get("runner", "experiment", "name")
|
||||
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
||||
#self.preprocess_cache()
|
||||
|
||||
|
||||
|
||||
def load_scene_name_list(self):
|
||||
@ -66,8 +69,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
)
|
||||
return datalist
|
||||
|
||||
def load_from_cache(self, scene_name, first_frame_idx, curr_frame_idx):
|
||||
cache_name = f"{scene_name}_{first_frame_idx}_{curr_frame_idx}.txt"
|
||||
def preprocess_cache(self):
|
||||
Log.info("preprocessing cache...")
|
||||
for item_idx in range(len(self.datalist)):
|
||||
self.__getitem__(item_idx)
|
||||
Log.success("finish preprocessing cache.")
|
||||
|
||||
def load_from_cache(self, scene_name, curr_frame_idx):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
if os.path.exists(cache_path):
|
||||
data = np.loadtxt(cache_path)
|
||||
@ -75,8 +84,8 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
else:
|
||||
return None
|
||||
|
||||
def save_to_cache(self, scene_name, first_frame_idx, curr_frame_idx, data):
|
||||
cache_name = f"{scene_name}_{first_frame_idx}_{curr_frame_idx}.txt"
|
||||
def save_to_cache(self, scene_name, curr_frame_idx, data):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
try:
|
||||
np.savetxt(cache_path, data)
|
||||
@ -106,7 +115,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
cached_data = None
|
||||
if self.cache:
|
||||
cached_data = self.load_from_cache(scene_name, first_frame_idx, frame_idx)
|
||||
cached_data = self.load_from_cache(scene_name, frame_idx)
|
||||
|
||||
if cached_data is None:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
@ -118,7 +127,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
|
||||
if self.cache:
|
||||
self.save_to_cache(scene_name, first_frame_idx, frame_idx, downsampled_target_point_cloud)
|
||||
self.save_to_cache(scene_name, frame_idx, downsampled_target_point_cloud)
|
||||
else:
|
||||
downsampled_target_point_cloud = cached_data
|
||||
|
||||
@ -137,7 +146,6 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
|
||||
best_to_world_trans = best_frame_to_world[:3,3]
|
||||
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||
"scanned_coverage_rate": scanned_coverages_rate,
|
||||
@ -147,6 +155,8 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name
|
||||
}
|
||||
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
|
@ -98,7 +98,7 @@ class Inferencer(Runner):
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
|
||||
input_data["scanned_n_to_1_pose_9d"] = [data["first_to_first_9d"][0].to(self.device)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_first_9d"][0].to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["scanned_pts"][0].shape[1]
|
||||
|
||||
@ -141,7 +141,7 @@ class Inferencer(Runner):
|
||||
new_pts_tensor = torch.tensor(new_pts, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0] , new_pts_tensor], dim=0)]
|
||||
input_data["scanned_n_to_1_pose_9d"] = [torch.cat([input_data["scanned_n_to_1_pose_9d"][0], next_pose_9d], dim=0)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], next_pose_9d], dim=0)]
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
# ------ Debug Start ------
|
||||
@ -150,9 +150,9 @@ class Inferencer(Runner):
|
||||
|
||||
|
||||
input_data["scanned_pts"] = input_data["scanned_pts"][0].cpu().numpy().tolist()
|
||||
input_data["scanned_n_to_1_pose_9d"] = input_data["scanned_n_to_1_pose_9d"][0].cpu().numpy().tolist()
|
||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||
result = {
|
||||
"pred_pose_9d_seq": input_data["scanned_n_to_1_pose_9d"],
|
||||
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
|
||||
"pts_seq": input_data["scanned_pts"],
|
||||
"target_pts_seq": scanned_view_pts,
|
||||
"coverage_rate_seq": pred_cr_seq,
|
||||
|
@ -6,7 +6,7 @@ import trimesh
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
class DataLoadUtil:
|
||||
|
||||
DISPLAY_TABLE_POSITION = np.asarray([0,0,0.85])
|
||||
@staticmethod
|
||||
def get_path(root, scene_name, frame_idx):
|
||||
path = os.path.join(root, scene_name, f"{frame_idx}")
|
||||
@ -160,12 +160,16 @@ class DataLoadUtil:
|
||||
return cam_pose_after
|
||||
|
||||
@staticmethod
|
||||
def load_cam_info(path, binocular=False):
|
||||
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
|
||||
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
|
||||
with open(camera_params_path, 'r') as f:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
world_to_display_table = np.eye(4)
|
||||
world_to_display_table[:3, 3] = - DataLoadUtil.DISPLAY_TABLE_POSITION
|
||||
if display_table_as_world_space_origin:
|
||||
cam_to_world = np.dot(world_to_display_table, cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
cam_info = {
|
||||
"cam_to_world": cam_to_world,
|
||||
@ -176,10 +180,13 @@ class DataLoadUtil:
|
||||
if binocular:
|
||||
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
|
||||
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
cam_to_world_O = np.asarray(label_data["extrinsic_cam_object"])
|
||||
cam_to_world_O = DataLoadUtil.cam_pose_transformation(cam_to_world_O)
|
||||
if display_table_as_world_space_origin:
|
||||
cam_to_world_O = np.dot(world_to_display_table, cam_to_world_O)
|
||||
cam_to_world_R = np.dot(world_to_display_table, cam_to_world_R)
|
||||
cam_info["cam_to_world_O"] = cam_to_world_O
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
return cam_info
|
||||
|
||||
@staticmethod
|
||||
|
Loading…
x
Reference in New Issue
Block a user