add fps
This commit is contained in:
parent
e315fd99ee
commit
a84417ef62
@ -162,8 +162,8 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
voxel_downsampled_combined_scanned_pts_np = (
|
voxel_downsampled_combined_scanned_pts_np, _ = (
|
||||||
PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
PtsUtil.voxelize_points(combined_scanned_views_pts, 0.002)
|
||||||
)
|
)
|
||||||
random_downsampled_combined_scanned_pts_np = (
|
random_downsampled_combined_scanned_pts_np = (
|
||||||
PtsUtil.random_downsample_point_cloud(
|
PtsUtil.random_downsample_point_cloud(
|
||||||
|
46
utils/pts.py
46
utils/pts.py
@ -12,12 +12,6 @@ class PtsUtil:
|
|||||||
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
|
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
|
||||||
return np.asarray(downsampled_pc.points)
|
return np.asarray(downsampled_pc.points)
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def transform_point_cloud(points, pose_mat):
|
|
||||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
|
||||||
points_h = np.dot(pose_mat, points_h.T).T
|
|
||||||
return points_h[:, :3]
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||||
if point_cloud.shape[0] == 0:
|
if point_cloud.shape[0] == 0:
|
||||||
@ -29,6 +23,28 @@ class PtsUtil:
|
|||||||
return point_cloud[idx], idx
|
return point_cloud[idx], idx
|
||||||
return point_cloud[idx]
|
return point_cloud[idx]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def fps_downsample_point_cloud(point_cloud, num_points, require_mask=False):
|
||||||
|
N = point_cloud.shape[0]
|
||||||
|
mask = np.zeros(N, dtype=bool)
|
||||||
|
|
||||||
|
sampled_indices = np.zeros(num_points, dtype=int)
|
||||||
|
sampled_indices[0] = np.random.randint(0, N)
|
||||||
|
mask[sampled_indices[0]] = True
|
||||||
|
distances = np.linalg.norm(point_cloud - point_cloud[sampled_indices[0]], axis=1)
|
||||||
|
for i in range(1, num_points):
|
||||||
|
farthest_index = np.argmax(distances)
|
||||||
|
sampled_indices[i] = farthest_index
|
||||||
|
mask[farthest_index] = True
|
||||||
|
|
||||||
|
new_distances = np.linalg.norm(point_cloud - point_cloud[farthest_index], axis=1)
|
||||||
|
distances = np.minimum(distances, new_distances)
|
||||||
|
|
||||||
|
sampled_points = point_cloud[sampled_indices]
|
||||||
|
if require_mask:
|
||||||
|
return sampled_points, mask
|
||||||
|
return sampled_points
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
||||||
idx = torch.randint(0, len(point_cloud), (num_points,))
|
idx = torch.randint(0, len(point_cloud), (num_points,))
|
||||||
@ -40,6 +56,12 @@ class PtsUtil:
|
|||||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||||
return unique_voxels
|
return unique_voxels
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def transform_point_cloud(points, pose_mat):
|
||||||
|
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||||
|
points_h = np.dot(pose_mat, points_h.T).T
|
||||||
|
return points_h[:, :3]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False):
|
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False):
|
||||||
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||||
@ -56,18 +78,6 @@ class PtsUtil:
|
|||||||
return overlapping_points, mask_L
|
return overlapping_points, mask_L
|
||||||
return overlapping_points
|
return overlapping_points
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def new_filter_points(points, normals, cam_pose, theta=75, require_idx=False):
|
|
||||||
camera_axis = -cam_pose[:3, 2]
|
|
||||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
|
||||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
|
||||||
theta_rad = np.deg2rad(theta)
|
|
||||||
idx = cos_theta > np.cos(theta_rad)
|
|
||||||
filtered_points= points[idx]
|
|
||||||
if require_idx:
|
|
||||||
return filtered_points, idx
|
|
||||||
return filtered_points
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)):
|
def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)):
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user