update preprocessor
This commit is contained in:
parent
fd7614c847
commit
9d6d36f5c2
@ -7,9 +7,9 @@ runner:
|
|||||||
name: debug
|
name: debug
|
||||||
root_dir: experiments
|
root_dir: experiments
|
||||||
generate:
|
generate:
|
||||||
port: 5002
|
port: 5005
|
||||||
from: 2200
|
from: 2300
|
||||||
to: 2300 # -1 means all
|
to: 2800 # -1 means all
|
||||||
object_dir: /media/hofee/data/data/scaled_object_meshes
|
object_dir: /media/hofee/data/data/scaled_object_meshes
|
||||||
table_model_path: /media/hofee/data/data/others/table.obj
|
table_model_path: /media/hofee/data/data/others/table.obj
|
||||||
output_dir: /media/hofee/repository/new_data_with_normal
|
output_dir: /media/hofee/repository/new_data_with_normal
|
||||||
@ -49,4 +49,4 @@ runner:
|
|||||||
Light:
|
Light:
|
||||||
location: [0,0,3.5]
|
location: [0,0,3.5]
|
||||||
orientation: [0,0,0]
|
orientation: [0,0,0]
|
||||||
power: 150
|
power: 150
|
@ -30,13 +30,15 @@ def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_t
|
|||||||
os.makedirs(os.path.join(root,scene, "target_pts"))
|
os.makedirs(os.path.join(root,scene, "target_pts"))
|
||||||
save_np_pts(pts_path, target_points, file_type)
|
save_np_pts(pts_path, target_points, file_type)
|
||||||
|
|
||||||
def save_mask_idx(root, scene, frame_idx, mask_idx: np.ndarray,filtered_idx, file_type="txt"):
|
def save_mask_idx(root, scene, frame_idx, mask_train_input: np.ndarray, mask_overlap, file_type="txt"):
|
||||||
indices_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}.{file_type}")
|
mask_train_input_path = os.path.join(root,scene, "mask_idx", f"mask_train_input_{frame_idx}.{file_type}")
|
||||||
|
mask_overlap_path = os.path.join(root,scene, "mask_idx", f"mask_overlap_{frame_idx}.{file_type}")
|
||||||
if not os.path.exists(os.path.join(root,scene, "mask_idx")):
|
if not os.path.exists(os.path.join(root,scene, "mask_idx")):
|
||||||
os.makedirs(os.path.join(root,scene, "mask_idx"))
|
os.makedirs(os.path.join(root,scene, "mask_idx"))
|
||||||
save_np_pts(indices_path, mask_idx, file_type)
|
save_np_pts(mask_train_input_path, mask_train_input, file_type)
|
||||||
filtered_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}_filtered.{file_type}")
|
save_np_pts(mask_overlap_path, mask_overlap, file_type)
|
||||||
save_np_pts(filtered_path, filtered_idx, file_type)
|
# filtered_path = os.path.join(root,scene, "mask_idx", f"{frame_idx}_filtered.{file_type}")
|
||||||
|
# save_np_pts(filtered_path, filtered_idx, file_type)
|
||||||
|
|
||||||
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
||||||
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
||||||
@ -62,14 +64,9 @@ def get_world_points(depth, cam_intrinsic, cam_extrinsic):
|
|||||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||||
return points_camera_world
|
return points_camera_world
|
||||||
|
|
||||||
def get_world_normals(normals, cam_extrinsic):
|
|
||||||
normals = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
|
||||||
normals_world = np.dot(cam_extrinsic[:3, :3], normals.T).T
|
|
||||||
return normals_world
|
|
||||||
|
|
||||||
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||||
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
||||||
points_camera = np.dot(cam_extrinsic, scan_points_homogeneous.T).T[:, :3]
|
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
|
||||||
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
||||||
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
||||||
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
||||||
@ -77,11 +74,12 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
|
|||||||
h, w = mask.shape[:2]
|
h, w = mask.shape[:2]
|
||||||
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
||||||
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
||||||
selected_points_indices = mask_colors == display_table_mask_label
|
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
|
||||||
|
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||||
return selected_points_indices
|
return selected_points_indices
|
||||||
|
|
||||||
|
|
||||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||||
|
|
||||||
''' configuration '''
|
''' configuration '''
|
||||||
target_mask_label = (0, 255, 0, 255)
|
target_mask_label = (0, 255, 0, 255)
|
||||||
@ -99,7 +97,11 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
|||||||
''' read frame data(depth|mask|normal) '''
|
''' read frame data(depth|mask|normal) '''
|
||||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||||
for frame_id in range(frame_num):
|
for frame_id in range(frame_num):
|
||||||
|
|
||||||
|
|
||||||
print(f"[scene({scene_idx}/{scene_total})|frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
|
print(f"[scene({scene_idx}/{scene_total})|frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
|
||||||
|
if frame_id != 126:
|
||||||
|
continue
|
||||||
path = DataLoadUtil.get_path(root, scene, frame_id)
|
path = DataLoadUtil.get_path(root, scene, frame_id)
|
||||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||||
@ -107,8 +109,8 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
|||||||
cam_info["far_plane"],
|
cam_info["far_plane"],
|
||||||
binocular=True
|
binocular=True
|
||||||
)
|
)
|
||||||
mask_L = DataLoadUtil.load_seg(path, binocular=True, left_only=True)
|
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||||
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
#normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
||||||
|
|
||||||
''' scene points '''
|
''' scene points '''
|
||||||
scene_points_L = get_world_points(depth_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
scene_points_L = get_world_points(depth_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||||
@ -131,28 +133,30 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1):
|
|||||||
)
|
)
|
||||||
|
|
||||||
''' target points '''
|
''' target points '''
|
||||||
mask_img = mask_L
|
mask_img_L = mask_L
|
||||||
|
mask_img_R = mask_R
|
||||||
mask_L = mask_L.reshape(-1, 4)
|
mask_L = mask_L.reshape(-1, 4)
|
||||||
mask_L = (mask_L == target_mask_label).all(axis=-1)
|
mask_L = (mask_L == target_mask_label).all(axis=-1)
|
||||||
mask_overlap = mask_L[random_sample_idx_L][overlap_idx_L]
|
mask_overlap = mask_L[random_sample_idx_L][overlap_idx_L]
|
||||||
scene_normals_L = normal_L.reshape(-1, 3)
|
|
||||||
target_overlap_normals = scene_normals_L[random_sample_idx_L][overlap_idx_L][mask_overlap]
|
|
||||||
target_normals = get_world_normals(target_overlap_normals, cam_info["cam_to_world"])
|
|
||||||
target_points = scene_overlap_points[mask_overlap]
|
target_points = scene_overlap_points[mask_overlap]
|
||||||
filtered_target_points, filtered_idx = PtsUtil.filter_points(
|
filtered_target_points, filtered_idx = PtsUtil.filter_points(
|
||||||
target_points, target_normals, cam_info["cam_to_world"], filter_degree, require_idx=True
|
target_points, target_normals, cam_info["cam_to_world"], filter_degree, require_idx=True
|
||||||
)
|
)
|
||||||
|
|
||||||
''' train_input_mask '''
|
''' train_input_mask '''
|
||||||
mask_train_input = mask_overlap[train_input_idx]
|
mask_train_input = mask_overlap[train_input_idx]
|
||||||
|
|
||||||
|
|
||||||
''' scan points indices '''
|
''' scan points indices '''
|
||||||
scan_points_indices = get_scan_points_indices(scan_points, mask_img, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||||
|
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||||
save_full_points(root, scene, frame_id, train_input_points)
|
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||||
save_target_points(root, scene, frame_id, filtered_target_points)
|
print(scan_points_indices.shape, scan_points_indices_L.shape, scan_points_indices_R.shape)
|
||||||
save_mask_idx(root, scene, frame_id, mask_train_input, filtered_idx=filtered_idx)
|
# np.savetxt(f"{root}/{scene}/scan_points_{frame_id}_L.txt", scan_points[scan_points_indices_L])
|
||||||
|
np.savetxt(f"{root}/{scene}/scan_points_{frame_id}.txt", scan_points[scan_points_indices])
|
||||||
|
save_full_points(root, scene, frame_id, train_input_points, file_type=file_type)
|
||||||
|
save_target_points(root, scene, frame_id, target_points)
|
||||||
|
save_mask_idx(root, scene, frame_id, mask_train_input, mask_overlap,file_type=file_type)
|
||||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices)
|
save_scan_points_indices(root, scene, frame_id, scan_points_indices)
|
||||||
|
|
||||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||||
@ -170,8 +174,10 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
from_idx = 0
|
from_idx = 0
|
||||||
to_idx = len(scene_list)
|
to_idx = len(scene_list)
|
||||||
|
|
||||||
|
|
||||||
cnt = 0
|
cnt = 0
|
||||||
total = to_idx - from_idx
|
total = to_idx - from_idx
|
||||||
for scene in scene_list[from_idx:to_idx]:
|
for scene in scene_list[from_idx:to_idx]:
|
||||||
save_scene_data(root, scene, cnt, total)
|
save_scene_data(root, scene, cnt, total, "txt")
|
||||||
cnt+=1
|
cnt+=1
|
Loading…
x
Reference in New Issue
Block a user